1
|
Magnetoencephalography: Clinical and Research Practices. Brain Sci 2018; 8:brainsci8080157. [PMID: 30126121 PMCID: PMC6120049 DOI: 10.3390/brainsci8080157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 11/25/2022] Open
Abstract
Magnetoencephalography (MEG) is a neurophysiological technique that detects the magnetic fields associated with brain activity. Synthetic aperture magnetometry (SAM), a MEG magnetic source imaging technique, can be used to construct both detailed maps of global brain activity as well as virtual electrode signals, which provide information that is similar to invasive electrode recordings. This innovative approach has demonstrated utility in both clinical and research settings. For individuals with epilepsy, MEG provides valuable, nonredundant information. MEG accurately localizes the irritative zone associated with interictal spikes, often detecting epileptiform activity other methods cannot, and may give localizing information when other methods fail. These capabilities potentially greatly increase the population eligible for epilepsy surgery and improve planning for those undergoing surgery. MEG methods can be readily adapted to research settings, allowing noninvasive assessment of whole brain neurophysiological activity, with a theoretical spatial range down to submillimeter voxels, and in both humans and nonhuman primates. The combination of clinical and research activities with MEG offers a unique opportunity to advance translational research from bench to bedside and back.
Collapse
|
2
|
|
3
|
Pang EW, Snead III OC. From Structure to Circuits: The Contribution of MEG Connectivity Studies to Functional Neurosurgery. Front Neuroanat 2016; 10:67. [PMID: 27445705 PMCID: PMC4914570 DOI: 10.3389/fnana.2016.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/07/2016] [Indexed: 11/14/2022] Open
Abstract
New advances in structural neuroimaging have revealed the intricate and extensive connections within the brain, data which have informed a number of ambitious projects such as the mapping of the human connectome. Elucidation of the structural connections of the brain, at both the macro and micro levels, promises new perspectives on brain structure and function that could translate into improved outcomes in functional neurosurgery. The understanding of neuronal structural connectivity afforded by these data now offers a vista on the brain, in both healthy and diseased states, that could not be seen with traditional neuroimaging. Concurrent with these developments in structural imaging, a complementary modality called magnetoencephalography (MEG) has been garnering great attention because it too holds promise for being able to shed light on the intricacies of functional brain connectivity. MEG is based upon the elemental principle of physics that an electrical current generates a magnetic field. Hence, MEG uses highly sensitive biomagnetometers to measure extracranial magnetic fields produced by intracellular neuronal currents. Put simply then, MEG is a measure of neurophysiological activity, which captures the magnetic fields generated by synchronized intraneuronal electrical activity. As such, MEG recordings offer exquisite resolution in the time and oscillatory domain and, as well, when co-registered with magnetic resonance imaging (MRI), offer excellent resolution in the spatial domain. Recent advances in MEG computational and graph theoretical methods have led to studies of connectivity in the time-frequency domain. As such, MEG can elucidate a neurophysiological-based functional circuitry that may enhance what is seen with MRI connectivity studies. In particular, MEG may offer additional insight not possible by MRI when used to study complex eloquent function, where the precise timing and coordination of brain areas is critical. This article will review the traditional use of MEG for functional neurosurgery, describe recent advances in MEG connectivity analyses, and consider the additional benefits that could be gained with the inclusion of MEG connectivity studies. Since MEG has been most widely applied to the study of epilepsy, we will frame this article within the context of epilepsy surgery and functional neurosurgery for epilepsy.
Collapse
Affiliation(s)
- Elizabeth W. Pang
- Division of Neurology, Hospital for Sick ChildrenToronto, ON, Canada
- Neurosciences and Mental Health, SickKids Research InstituteToronto, ON, Canada
- Department of Paediatrics, Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - O. C. Snead III
- Division of Neurology, Hospital for Sick ChildrenToronto, ON, Canada
- Neurosciences and Mental Health, SickKids Research InstituteToronto, ON, Canada
- Department of Paediatrics, Faculty of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
4
|
Huang CW, Huang MX, Ji Z, Swan AR, Angeles AM, Song T, Huang JW, Lee RR. High-resolution MEG source imaging approach to accurately localize Broca’s area in patients with brain tumor or epilepsy. Clin Neurophysiol 2016; 127:2308-16. [DOI: 10.1016/j.clinph.2016.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/15/2015] [Accepted: 02/09/2016] [Indexed: 11/28/2022]
|
5
|
Fully automated quality assurance and localization of volumetric MEG for single-subject mapping. J Neurosci Methods 2016; 266:21-31. [PMID: 26993819 DOI: 10.1016/j.jneumeth.2016.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Robust and reproducible source mapping with magnetoencephalography is particularly challenging at the individual level. We evaluated a receiver-operating characteristic reliability (ROC-r) method for automated production of volumetric MEG maps in single-subjects. ROC-r provides quality assurance comparable to that offered by goodness-of-fit (GoF) and confidence volume (CV) for equivalent current dipole (ECD) modeling. NEW METHOD ROC-r utilizes within-session reproducibility for quality assurance, latency identification, and thresholding of volumetric source maps. We tested ROC-r on simulated and real MEG with a strongly focal source, using somatosensory evoked fields (SEFs) elicited by bilateral median nerve stimulation (MNS). For quality assurance, the ROC-r reliable fraction (FR) was compared to the ECD GoF and CV. Peak beamformer locations and latencies identified by ROC-r were compared to the ECD for co-localization accuracy. RESULTS The predominant component of the SEF response occurred around 35ms, contralateral to the MNS. COMPARISON WITH EXISTING METHODS FR and 1/CV were more strongly correlated (mean Pearson's correlation: 0.76; 95% CI 0.60-0.87) than FR and GoF (0.65; 95% CI 0.32-0.85). There was no difference in the latency of the peak GoF (35.0+/-0.6ms), CV (34.8+/-0.7ms) and FR (35.5+/-0.8ms). The ECD fits and ROC-r peaks co-localized to within a mean (median) distance of 8.3+/-5.9mm (6.2mm). CONCLUSION ROC-r volumetric mapping co-localized closely with the standard ECD approach. This analysis can be added to any whole-brain MEG source imaging protocol, and is especially useful for single-subject mapping. Additionally, the development of FR as an analogue to GoF or CV for volumetric mapping is a critical improvement for clinical applications.
Collapse
|
6
|
Abstract
White matter matures with age and is important for the efficient transmission of neuronal signals. Consequently, white matter growth may underlie the development of cognitive processes important for learning, including the speed of information processing. To dissect the relationship between white matter structure and information processing speed, we administered a reaction time task (finger abduction in response to visual cue) to 27 typically developing, right-handed children aged 4 to 13. Magnetoencephalography and Diffusion Tensor Imaging were used to delineate white matter connections implicated in visual-motor information processing. Fractional anisotropy (FA) and radial diffusivity (RD) of the optic radiation in the left hemisphere, and FA and mean diffusivity (MD) of the optic radiation in the right hemisphere changed significantly with age. MD and RD decreased with age in the right inferior fronto-occipital fasciculus, and bilaterally in the cortico-spinal tracts. No age-related changes were evident in the inferior longitudinal fasciculus. FA of the cortico-spinal tract in the left hemisphere and MD of the inferior fronto-occipital fasciculus of the right hemisphere contributed uniquely beyond the effect of age in accounting for reaction time performance of the right hand. Our findings support the role of white matter maturation in the development of information processing speed.
Collapse
|
7
|
Mohamed IS, Otsubo H, Ferrari P, Sharma R, Ochi A, Elliott I, Go C, Chuang S, Rutka J, Snead C, Cheyne D. Source localization of interictal spike-locked neuromagnetic oscillations in pediatric neocortical epilepsy. Clin Neurophysiol 2013; 124:1517-27. [PMID: 23523111 DOI: 10.1016/j.clinph.2013.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To evaluate the utility of an event-related beamforming (ERB) algorithm in source localization of interictal discharges. METHODS We analyzed interictal magnetoencephalography data in 35 children with intractable neocortical epilepsy. We used a spatiotemporal beamforming method to estimate the spatial distribution of source power in individual interictal spikes. We compared ERB results to source localization using the equivalent current dipole model and to the seizure onset zones on intracranial EEG. RESULTS Focal beamformer localization was observed in 66% of patients and multifocal in the remaining 34%. ERB localized within 2 cm of the equivalent current dipole cluster centroid in 77% of the patients. ERB localization was concordant with the seizure onset zone on intracranial EEG at the gyral level in 69% of patients. Focal ERB localization area was included in the resection margin in 22/23 patients. However, focal ERB localization was not statistically associated with better surgical outcome. CONCLUSIONS ERB can be used for source localization of interictal spikes and can be predictive of the ictal onset zone in a subset of patients with neocortical epilepsy. SIGNIFICANCE These results support the utility of beamformer source localization as a fast semi-automated method for source localization of interictal spikes and planning the surgical strategy.
Collapse
Affiliation(s)
- Ismail S Mohamed
- Department of Pediatrics, IWK Health Center, Dalhousie University, Halifax, NS, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Comprehensive Functional Mapping Scheme for Non-Invasive Primary Sensorimotor Cortex Mapping. Brain Topogr 2012; 26:511-23. [DOI: 10.1007/s10548-012-0271-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
|
9
|
Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 2012; 117:354-62. [PMID: 22702484 DOI: 10.3171/2012.5.jns112124] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Direct cortical stimulation (DCS) is the gold-standard technique for motor mapping during craniotomy. However, preoperative noninvasive motor mapping is becoming increasingly accurate. Two such noninvasive modalities are navigated transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG) imaging. While MEG imaging has already been extensively validated as an accurate modality of noninvasive motor mapping, TMS is less well studied. In this study, the authors compared the accuracy of TMS to both DCS and MEG imaging. METHODS Patients with tumors in proximity to primary motor cortex underwent preoperative TMS and MEG imaging for motor mapping. The patients subsequently underwent motor mapping via intraoperative DCS. The loci of maximal response were recorded from each modality and compared. Motor strength was assessed at 3 months postoperatively. RESULTS Transcranial magnetic stimulation and MEG imaging were performed on 24 patients. Intraoperative DCS yielded 8 positive motor sites in 5 patients. The median distance ± SEM between TMS and DCS motor sites was 2.13 ± 0.29 mm, and between TMS and MEG imaging motor sites was 4.71 ± 1.08 mm. In no patients did DCS motor mapping reveal a motor site that was unrecognized by TMS. Three of 24 patients developed new, early neurological deficit in the form of upper-extremity paresis. At the 3-month follow-up evaluation, 2 of these patients were significantly improved, experiencing difficulty only with fine motor tasks; the remaining patient had improvement to 4/5 strength. There were no deaths over the course of the study. CONCLUSIONS Maps of the motor system generated with TMS correlate well with those generated by both MEG imaging and DCS. Negative TMS mapping also correlates with negative DCS mapping. Navigated TMS is an accurate modality for noninvasively generating preoperative motor maps.
Collapse
Affiliation(s)
- Phiroz E Tarapore
- Department of Neurological Surgery, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Worthen SF, Hobson AR, Hall SD, Aziz Q, Furlong PL. Primary and secondary somatosensory cortex responses to anticipation and pain: a magnetoencephalography study. Eur J Neurosci 2011; 33:946-59. [DOI: 10.1111/j.1460-9568.2010.07575.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Sugiyama I, Imai K, Yamaguchi Y, Ochi A, Akizuki Y, Go C, Akiyama T, Snead OC, Rutka JT, Drake JM, Widjaja E, Chuang SH, Cheyne D, Otsubo H. Localization of epileptic foci in children with intractable epilepsy secondary to multiple cortical tubers by using synthetic aperture magnetometry kurtosis. J Neurosurg Pediatr 2009; 4:515-22. [PMID: 19951036 DOI: 10.3171/2009.7.peds09198] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Magnetoencephalography (MEG) has been typically used to localize epileptic activity by modeling interictal activity as equivalent current dipoles (ECDs). Synthetic aperture magnetometry (SAM) is a recently developed adaptive spatial filtering algorithm for MEG that provides some advantages over the ECD approach. The SAM-kurtosis algorithm (also known as SAM[g2]) additionally provides automated temporal detection of spike sources by using excess kurtosis value (steepness of epileptic spike on virtual sensors). To evaluate the efficacy of the SAM(g2) method, the authors applied it to readings obtained in children with intractable epilepsy secondary to tuberous sclerosis complex (TSC), and compared them to localizations obtained with ECDs. METHODS The authors studied 13 children with TSC (7 girls) whose ages ranged from 13 months to 16.3 years (mean 7.3 years). Video electroencephalography, MR imaging, and MEG studies were analyzed. A single ECD model was applied to localize ECD clusters. The SAM(g2) value was calculated at each SAM(g2) virtual voxel in the patient's MR imaging-defined brain volume. The authors defined the epileptic voxels of SAM(g2) (evSAM[g2]) as those with local peak kurtosis values higher than half of the maximum. A clustering of ECDs had to contain > or = 6 ECDs within 1 cm of each other, and a grouping of evSAM(g2)s had to contain > or = 3 evSAM(g2)s within 1 cm of each other. The authors then compared both ECD clusters and evSAM(g2) groups with the resection area and correlated these data with seizure outcome. RESULTS Seizures started when patients were between 6 weeks and 8 years of age (median 6 months), and became intractable secondary to multiple tubers in all cases. Ictal onset on scalp video electroencephalography was lateralized in 8 patients (62%). The MEG studies showed multiple ECD clusters in 7 patients (54%). The SAM(g2) method showed multiple groups of epileptic voxels in 8 patients (62%). Colocalization of grouped evSAM(g2) with ECD clusters ranged from 20 to 100%, with a mean of 82%. Eight patients underwent resection of single (1 patient) and multiple (7 patients) lobes, with 6 patients achieving freedom from seizures. Of 8 patients who underwent surgery, in 7 the resection area covered ECD clusters and grouped evSAM(g2)s. In the remaining patient the resection area partially included the ECD cluster and grouped evSAM(g2)s. Six of the 7 patients became seizure free. CONCLUSIONS The combination of SAM(g2) and ECD analyses succeeded in localizing the complex epileptic zones in children with TSC who had intractable epilepsy secondary to multiple cortical tubers. For the subset of children with TSC who present with early-onset and nonlateralized seizures, MEG studies in which SAM(g2) and ECD are used might identify suitable candidates for resection to control seizures.
Collapse
Affiliation(s)
- Ichiro Sugiyama
- Divisions of Neurology, The Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
American Clinical MEG Society (ACMEGS) Position Statement: The Value of Magnetoencephalography (MEG)/Magnetic Source Imaging (MSI) in Noninvasive Presurgical Evaluation of Patients With Medically Intractable Localization-related Epilepsy. J Clin Neurophysiol 2009; 26:290-3. [DOI: 10.1097/wnp.0b013e3181b49d50] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Gaetz W, Cheyne D, Rutka JT, Drake J, Benifla M, Strantzas S, Widjaja E, Holowka S, Tovar-Spinoza Z, Otsubo H, Pang EW. Presurgical Localization of Primary Motor Cortex in Pediatric Patients with Brain Lesions by the Use of Spatially Filtered Magnetoencephalography. Oper Neurosurg (Hagerstown) 2009; 64:ons177-85; discussion ons186. [DOI: 10.1227/01.neu.0000316433.10913.32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Objective:
The objective of this study was to confirm the efficacy of spatially filtered magnetoencephalography for the preoperative localization of primary motor cortex in pediatric patients with focal lesions in the region of the sensorimotor cortex.
Methods:
We recorded movement-related magnetoencephalographic activity in 10 pediatric patients (age range, 7–18 years; mean age, 12.5 years) undergoing presurgical evaluation for focal brain lesion resection. Participants made transient movements of the right and left index finger in response to a visual cue. The premovement motor field component in the averaged brain response was localized with a newly developed beamformer spatial filter algorithm. Cortical mapping of motor cortex intraoperatively was conducted in 5 of the 10 patients.
Results:
The motor field time-locked to electromyography onset was successfully localized to cortical areas corresponding to the hand region primary motor cortex in 95% of cases (9 of 10 from nonlesional hemisphere; 10 of 10 from lesional hemisphere). Intraoperative electrocortical stimulation activated the expected muscles at motor field coregistered cortical source locations in all cases tested (n = 5). Using these methods, we also found that displacement of the sensorimotor cortex by space-occupying tumors did not interfere with the localization of motor cortex.
Conclusion:
We conclude that noninvasive localization of the primary motor cortex can be reliably performed by using spatially filtered magnetoencephalography techniques, which provide a robust and accurate measurement of motor cortical function for the purpose of surgical guidance.
Collapse
Affiliation(s)
- William Gaetz
- Department of Diagnostic Imaging, Hospital for Sick Children, and Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Douglas Cheyne
- Department of Diagnostic Imaging, Hospital for Sick Children, and Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - James T. Rutka
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada
| | - James Drake
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada
| | - Mony Benifla
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada
| | - Samuel Strantzas
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada
| | - Elysa Widjaja
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Stephanie Holowka
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | | | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|