1
|
Li M, Lan B, Sankin G, Zhou Y, Liu W, Xia J, Wang D, Trahey G, Zhong P, Yao J. Simultaneous Photoacoustic Imaging and Cavitation Mapping in Shockwave Lithotripsy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:468-477. [PMID: 31329550 PMCID: PMC6960366 DOI: 10.1109/tmi.2019.2928740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Kidney stone disease is a major health problem worldwide. Shockwave lithotripsy (SWL), which uses high-energy shockwave pulses to break up kidney stones, is extensively used in clinic. However, despite its noninvasiveness, SWL can produce cavitation in vivo. The rapid expansion and violent collapse of cavitation bubbles in small blood vessels may result in renal vascular injury. To better understand the mechanism of tissue injury and improve treatment safety and efficiency, it is highly desirable to concurrently detect cavitation and vascular injury during SWL. Current imaging modalities used in SWL ( e.g. , C-arm fluoroscopy and B-mode ultrasound) are not sensitive to vascular injuries. By contrast, photoacoustic imaging is a non-invasive and non-radiative imaging modality that is sensitive to blood, by using hemoglobin as the endogenous contrast. Moreover, photoacoustic imaging is also compatible with passive cavitation detection by sharing the ultrasound detection system. Here, we have integrated shockwave treatment, photoacoustic imaging, and passive cavitation detection into a single system. Our experimental results on phantoms and in vivo small animals have collectively demonstrated that the integrated system is capable of capturing shockwave-induced cavitation and the resultant vascular injury simultaneously. We expect that the integrated system, when combined with our recently developed internal-light-illumination photoacoustic imaging, will find important applications for monitoring shockwave-induced vascular injury in deep tissues during SWL.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bangxin Lan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Georgii Sankin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Yuan Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wei Liu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jun Xia
- Department of Biomedical Engineering, University of Buffalo, Buffalo, NY 14260, USA
| | - Depeng Wang
- Department of Biomedical Engineering, University of Buffalo, Buffalo, NY 14260, USA
| | - Gregg Trahey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Pei Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- P. Zhong, , J. Yao,
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- P. Zhong, , J. Yao,
| |
Collapse
|
2
|
Gravenstein D. Extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy. ANESTHESIOLOGY CLINICS OF NORTH AMERICA 2000; 18:953-71. [PMID: 11094699 DOI: 10.1016/s0889-8537(05)70203-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This article reviews the basic anesthetic considerations for ESWL and PCNL. General principles governing the operation of lithotripters, elements of treatment that impinge on safety, and effective intraoperative anesthesia and complications that may be encountered in the perioperative period are discussed. Factors influencing blood loss and concerns arising from positioning patients prone are addressed in the sections devoted to PCNL.
Collapse
Affiliation(s)
- D Gravenstein
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|