1
|
Goyal M, Goel A, Singh R, Chowdhury N, Verma N, Tiwari S, Deepak KK. Circadian rhythm of airways caliber and its autonomic modulation. Chronobiol Int 2020; 37:845-855. [PMID: 32077322 DOI: 10.1080/07420528.2020.1731525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The autonomic nervous system (ANS) is one of the effector pathways for circadian variation of many physiological parameters. Autonomic tone and airways caliber have been reported to exhibit circadian variation in separate studies. A simultaneous investigation of heart rate variability (HRV) and airway caliber might ascertain how airway caliber is modulated by autonomic tone. This study was planned to identify the variations in airway caliber and autonomic function tone during a 24-hour span. A total of 56 healthy male subjects with almost similar daily routines were studied. Time domain, frequency domain and nonlinear analysis of R-R interval from 5 min electrocardiogram (ECG) was done seven times during the daytime wake span at 3-hour intervals starting at 05:00 h in the morning until 23:00 h in the night. Simultaneously peak expiratory flow rate (PEFR) was determined using a mini Wright's peak flow meter. Rhythmometric analysis was done for PEFR and HRV parameters. Significant circadian variation in low frequency (LF) and high frequency (HF) variance was identified in this group of healthy subjects. The circadian rhythm of LF variance was characterized by a gradual increase and corresponding reciprocal change in HF variance from morning until night. The LF/HF ratio and SD2/SD1 ratio reflecting sympatho-vagal balance showed low to high values from morning to evening. The acrophase of the PEFR temporal pattern is similar to that of LF power and almost opposite in phase to that of HF power. PEFR is positively correlated with LF power. The circadian rhythm of airway caliber co-varies with cardiac autonomic tone. It appears that the temporal pattern of cardiac autonomic tone precedes in time that of airways caliber, thereby suggesting the latter operates under the modulatory effect of the 24-hour pattern in sympatho-vagal balance.
Collapse
Affiliation(s)
- Manish Goyal
- Department of Physiology, All India Institute of Medical Sciences , Bhubaneswar, India
| | - Arun Goel
- Department of Physiology, All India Institute of Medical Sciences , Rishikesh, India
| | - Ruchi Singh
- Department of Physiology, All India Institute of Medical Sciences , Bhopal, India
| | - Nilotpal Chowdhury
- Department of Physiology, All India Institute of Medical Sciences , Rishikesh, India
| | - Narsingh Verma
- Department of Physiology, King George's Medical University , Lucknow, India
| | - Sunita Tiwari
- Department of Physiology, King George's Medical University , Lucknow, India
| | - Kishore Kumar Deepak
- Department of Physiology, All India Institute of Medical Sciences , Delhi, India
| |
Collapse
|
2
|
Carbajal-García A, Reyes-García J, Montaño LM. Androgen Effects on the Adrenergic System of the Vascular, Airway, and Cardiac Myocytes and Their Relevance in Pathological Processes. Int J Endocrinol 2020; 2020:8849641. [PMID: 33273918 PMCID: PMC7676939 DOI: 10.1155/2020/8849641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Androgen signaling comprises nongenomic and genomic pathways. Nongenomic actions are not related to the binding of the androgen receptor (AR) and occur rapidly. The genomic effects implicate the binding to a cytosolic AR, leading to protein synthesis. Both events are independent of each other. Genomic effects have been associated with different pathologies such as vascular ischemia, hypertension, asthma, and cardiovascular diseases. Catecholamines play a crucial role in regulating vascular smooth muscle (VSM), airway smooth muscle (ASM), and cardiac muscle (CM) function and tone. OBJECTIVE The aim of this review is an updated analysis of the role of androgens in the adrenergic system of vascular, airway, and cardiac myocytes. Body. Testosterone (T) favors vasoconstriction, and its concentration fluctuation during life stages can affect the vascular tone and might contribute to the development of hypertension. In the VSM, T increases α1-adrenergic receptors (α 1-ARs) and decreases adenylyl cyclase expression, favoring high blood pressure and hypertension. Androgens have also been associated with asthma. During puberty, girls are more susceptible to present asthma symptoms than boys because of the increment in the plasmatic concentrations of T in young men. In the ASM, β 2-ARs are responsible for the bronchodilator effect, and T augments the expression of β 2-ARs evoking an increase in the relaxing response to salbutamol. The levels of T are also associated with an increment in atherosclerosis and cardiovascular risk. In the CM, activation of α 1A-ARs and β 2-ARs increases the ionotropic activity, leading to the development of contraction, and T upregulates the expression of both receptors and improves the myocardial performance. CONCLUSIONS Androgens play an essential role in the adrenergic system of vascular, airway, and cardiac myocytes, favoring either a state of health or disease. While the use of androgens as a therapeutic tool for treating asthma symptoms or heart disease is proposed, the vascular system is warmly affected.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
3
|
Vasconcelos LHC, Silva MDCC, Costa AC, de Oliveira GA, de Souza ILL, Queiroga FR, Araujo LCDC, Cardoso GA, Righetti RF, Silva AS, da Silva PM, Carvalho CRDO, Vieira GC, Tibério IDFLC, Cavalcante FDA, da Silva BA. A Guinea Pig Model of Airway Smooth Muscle Hyperreactivity Induced by Chronic Allergic Lung Inflammation: Contribution of Epithelium and Oxidative Stress. Front Pharmacol 2019; 9:1547. [PMID: 30814952 PMCID: PMC6353839 DOI: 10.3389/fphar.2018.01547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
Asthma is a heterogeneous disease of the airways characterized by chronic inflammation associated with bronchial and smooth muscle hyperresponsiveness. Currently, different murine models for the study of asthma show poor bronchial hyperresponsiveness due to a scarcity of smooth muscle and large airways, resulting in a failure to reproduce smooth muscle hyperreactivity. Thus, we aimed to standardize a guinea pig model of chronic allergic lung inflammation mimicking airway smooth muscle hyperreactivity observed in asthmatics (Asth). Animals were randomly divided into a control group (Ctrl), which received saline (0.9% NaCl), and the Asth group, subjected to in vivo sensitization with ovalbumin (OVA) nebulization. Morphological analysis was performed by hematoxylin-eosin staining. Bronchial hyperresponsiveness was evaluated by nebulization time in the fifth, sixth, and seventh inhalations (NT5-7) and tracheal isometric contractions were assessed by force transducer. Total antioxidant capacity was measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and protein expression by Western blot. Histologically, the Asth group developed peribronchial cellular infiltrate, epithelial hyperplasia and smooth muscle thickening. After the fourth nebulization, the Asth group developed bronchial hyperreactivity. The trachea from the Asth group contracted after in vitro stimulation with OVA, differing from the Ctrl group, which showed no response. Additionally, airway smooth muscle hyperreactivity to carbachol and histamine was observed in the Asth group only in intact epithelium preparations, but not to KCl, and this effect was associated with an augmented production of reactive oxygen species. Moreover, lung inflammation impaired the relaxant potency of isoproterenol only in intact epithelium preparations, without interfering with nifedipine, and it was found to be produced by transforming growth factor-β negative modulation of β adrenergic receptors and, furthermore, big-conductance Ca2+-sensitive K+ channels. These effects were also associated with increased levels of phosphatidylinositol 3-kinases but not extracellular signal-regulated kinases 1/2 or phosphorylation, and augmented α-actin content as well, explaining the increased smooth muscle mass. Furthermore, pulmonary antioxidant capacity was impaired in the Asth group. Therefore, we developed a standardized and easy-to-use, reproducible guinea pig model of lung inflammation that mimics airway smooth muscle hypercontractility, facilitating the investigation of the mechanisms of bronchial hyperresponsiveness in asthma and new therapeutic alternatives.
Collapse
Affiliation(s)
- Luiz Henrique César Vasconcelos
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Maria da Conceição Correia Silva
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Alana Cristina Costa
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Giuliana Amanda de Oliveira
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Iara Leão Luna de Souza
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Fernando Ramos Queiroga
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Layanne Cabral da Cunha Araujo
- Programa de Pós graduação em Ciências (Fisiologia Humana), Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, Brazil
| | - Glêbia Alexa Cardoso
- Programa Associado de Pós graduação em Educação Física, Universidade Federal da Paraíba/Universidade do Pernambuco, João Pessoa, Brazil
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
- Hospital Sírio Libanês, São Paulo, Brazil
| | - Alexandre Sérgio Silva
- Programa Associado de Pós graduação em Educação Física, Universidade Federal da Paraíba/Universidade do Pernambuco, João Pessoa, Brazil
- Departamento de Educação Física, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Patrícia Mirella da Silva
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
- Departamento de Biologia Molecular, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Carla Roberta de Oliveira Carvalho
- Programa de Pós graduação em Ciências (Fisiologia Humana), Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giciane Carvalho Vieira
- Departamento de Morfologia/Centro de Ciências da Saúde/Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | - Fabiana de Andrade Cavalcante
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
- Departamento de Fisiologia e Patologia/Centro de Ciências da Saúde/Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
- Departamento de Ciências Farmacêuticas/Centro de Ciências da Saúde/Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
4
|
Malaspinas I, Petak F, Baudat A, Doras C, Eigenmann PA, Habre W. Blockade of the cholinergic system during sensitization enhances lung responsiveness to allergen in rats. Clin Exp Pharmacol Physiol 2018; 45:1293-1301. [PMID: 29992592 DOI: 10.1111/1440-1681.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022]
Abstract
Although acute prophylactic administration of atropine modulates airway responsiveness, the role of the parasympathetic nervous system in the pathogenesis of sensitization and in antigen-induced bronchoconstriction remains unclear. The aim of the present study is to determine whether blocking muscarinic receptors during chronic allergen exposure modulates lung responsiveness to the specific allergen. Forty rats were randomly assigned to one of the following five treatment groups: sensitization with saline vehicle, intraperitoneal injection of ovalbumin (1 mg) with or without atropine treatment (10 mg/kg per day) and repeated ovalbumin aerosol (1.25 mg/mL for 20 minutes) either alone or combined with atropine. Lung responsiveness to methacholine (4-16 μg/kg per minute) and intravenous ovalbumin (2 mg) was established before and 21 days after treatment with forced oscillations following bilateral vagotomy. Lung cellularity was determined by analysis of bronchoalveolar lavage fluid (BALF). A lung inflammatory response in all sensitized animals was defined as an increase in the number of inflammatory cells in the BALF. Baseline respiratory mechanics and methacholine responsiveness on Days 0 and 21 were comparable in all groups. However, increases in airway resistance following intravenous allergen challenge were significantly exacerbated in rats that received atropine. Inhibition of the cholinergic nervous system during allergic sensitization potentiates bronchoconstriction following exposure to the specific allergen. These findings highlight the role of the cholinergic neuronal pathway in airway sensitization to a specific allergen.
Collapse
Affiliation(s)
- Iliona Malaspinas
- Anaesthesiological Investigation Unit, University of Geneva, Geneva, Switzerland
| | - Ferenc Petak
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Aurélie Baudat
- Anaesthesiological Investigation Unit, University of Geneva, Geneva, Switzerland
| | - Camille Doras
- Anaesthesiological Investigation Unit, University of Geneva, Geneva, Switzerland
| | - Philippe A Eigenmann
- Department of Paediatrics, Geneva Children's Hospital, University Hospital of Geneva, Geneva, Switzerland
| | - Walid Habre
- Anaesthesiological Investigation Unit, University of Geneva, Geneva, Switzerland.,Pediatric Anaesthesia Unit, Geneva Children's Hospital, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
The pivotal role of airway smooth muscle in asthma pathophysiology. J Allergy (Cairo) 2011; 2011:742710. [PMID: 22220184 PMCID: PMC3246780 DOI: 10.1155/2011/742710] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/30/2011] [Indexed: 12/13/2022] Open
Abstract
Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function.
Collapse
|
6
|
Zhou J, Alvarez-Elizondo MB, Botvinick E, George SC. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction. J Appl Physiol (1985) 2011; 112:627-37. [PMID: 22114176 DOI: 10.1152/japplphysiol.00739.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Biomedical Engineering, Universityof California, Irvine, CA 92697-2715, USA
| | | | | | | |
Collapse
|
7
|
Bayat S, Albu G, Layachi S, Portier F, Fathi M, Peták F, Habre W. Acute hemorrhagic shock decreases airway resistance in anesthetized rat. J Appl Physiol (1985) 2011; 111:458-64. [PMID: 21596916 DOI: 10.1152/japplphysiol.00024.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the relation between changes in pulmonary and systemic hemodynamics to those in the airway resistance, respiratory tissue mechanics, and thoracic gas volume (TGV) following acute hemorrhage and blood reinfusion in rats. Forced oscillation technique was used to measure airway resistance (Raw), respiratory tissue damping, and elastance at baseline and after stepwise 1-ml blood withdrawals up to 5 ml total, followed by stepwise reinfusion up to full restoration. Mean systemic (Pam) and pulmonary arterial pressures and suprarenal aortic blood flow were measured at each step. In supplemental animals, plethysmographic TGV, Pam, and respiratory mechanics measurements were performed. Blood volume loss (BVL) led to proportional decreases in Raw (66.5 ± 8.8 vs. 44.8 ± 9.0 cmH2O·s·l−1 with 5 ml, P < 0.001), Pam, and aortic blood flow. In contrast, tissue damping increased significantly (1,070 ± 91 vs. 1,235 ± 105 cmH2O/l, P = 0.009 with 5 ml BVL), whereas tissue elastance did not change significantly. TGV significantly increased with acute BVL (3.7 ± 0.2 vs. 4.2 ± 0.2 ml, P = 0.01). Stepwise reinfusions produced opposite changes in the above parameters, with Raw reaching a higher value than baseline ( P = 0.001) upon full volume restoration. Both adrenalin ( P = 0.015) and noradrenalin levels were elevated ( P = 0.010) after 5-ml blood withdrawal. Our data suggest that the decreases in Raw following BVL may be attributed to the following: 1) an increased TGV enhancing airway parenchymal tethering forces; and 2) an increase in circulating catecholamines. The apparent beneficial effect of a reduction in Raw in acute hemorrhagic shock is counteracted by an increase in dead space and the appearance of peripheral mechanical heterogeneities due to de-recruitment of the pulmonary vasculature.
Collapse
Affiliation(s)
- Sam Bayat
- Université de 1Picardie Jules Verne, EA4285 Péritox UMI01 Institut National de l'Environnement Industriel et des Risques and Centre Hospitalier Universitaire d'Amiens, Amiens, France
| | - Gergely Albu
- Anesthesiological Investigations Unit, University of Geneva, and
| | - Skander Layachi
- Université de 1Picardie Jules Verne, EA4285 Péritox UMI01 Institut National de l'Environnement Industriel et des Risques and Centre Hospitalier Universitaire d'Amiens, Amiens, France
| | - Flore Portier
- Université de 1Picardie Jules Verne, EA4285 Péritox UMI01 Institut National de l'Environnement Industriel et des Risques and Centre Hospitalier Universitaire d'Amiens, Amiens, France
| | - Marc Fathi
- Laboratory of Toxicology and Immunology, University Hospitals of Geneva, Geneva, Switzerland
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary; and
| | - Walid Habre
- Anesthesiological Investigations Unit, University of Geneva, and
- Pediatric Anesthesia Unit, Geneva Children's Hospital, Geneva, Switzerland
| |
Collapse
|