1
|
Luo X, Guo J, Zhang J, Ma Z, Li H. Overview of chicken embryo genes related to sex differentiation. PeerJ 2024; 12:e17072. [PMID: 38525278 PMCID: PMC10959104 DOI: 10.7717/peerj.17072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
Sex determination in chickens at an early embryonic stage has been a longstanding challenge in poultry production due to the unique ZZ:ZW sex chromosome system and various influencing factors. This review has summarized the genes related to the sex differentiation of chicken early embryos (mainly Dmrt1, Sox9, Amh, Cyp19a1, Foxl2, Tle4z1, Jun, Hintw, Ube2i, Spin1z, Hmgcs1, Foxd1, Tox3, Ddx4, cHemgn and Serpinb11 in this article), and has found that these contributions enhance our understanding of the genetic basis of sex determination in chickens, while identifying potential gene targets for future research. This knowledge may inform and guide the development of sex screening technologies for hatching eggs and support advancements in gene-editing approaches for chicken embryos. Moreover, these insights offer hope for enhancing animal welfare and promoting conservation efforts in poultry production.
Collapse
Affiliation(s)
- Xiaolu Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jiancheng Guo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jiahang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
2
|
Zheng M, Liu X, Meng Y, Lin X, Li J, Zhu J, Zhao M, Liu L, Geng T, Gong D, Zhang J. Female-Biased Expression of R-spondin 1 in Chicken Embryonic Gonads Is Estrogen-Dependent. Animals (Basel) 2023; 13:2240. [PMID: 37444038 DOI: 10.3390/ani13132240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The mechanism of sex determination in chickens, especially the molecular mechanism of female ovarian development, has not yet been fully elucidated. Previous studies have shown that RSPO1, which is associated with ovarian development in mammals, might have a conserved role in chickens. In this study, we systematically investigated the spatiotemporal expression pattern of RSPO1 in various tissues, especially gonads, of male and female chicken embryos using qPCR and Western blotting, and we explored its correlation with the expression of key genes in the estrogen pathway using drug treatment or gene overexpression in vivo and in vitro. Our results reveal that RSPO1 was widely expressed in all examined tissues of chicken embryos, showing a female bias in gonadal tissues at both the mRNA and protein levels. Surprisingly, RSPO1 was not differentially expressed between male and female gonadal cells with fadrozole-induced estrogen pathway blockades, and furthermore, estradiol-induced estrogen stimulation altered the expression of RSPO1. In addition, overexpression of RSPO1 in gonadal cells induced the mRNA expression of its downstream target genes, Wnt family member 4 (WNT4) and Catenin beta 1 (CTNNB1), and that of estrogen receptor α (ERα), an estrogen pathway gene. In summary, this study provided new evidence for elucidating the role of RSPO1 in ovarian development in poultry.
Collapse
Affiliation(s)
- Mingde Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xikui Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yu Meng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiao Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiahui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Zhang X, Li J, Chen S, Yang N, Zheng J. Overview of Avian Sex Reversal. Int J Mol Sci 2023; 24:ijms24098284. [PMID: 37175998 PMCID: PMC10179413 DOI: 10.3390/ijms24098284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Sex determination and differentiation are processes by which a bipotential gonad adopts either a testicular or ovarian cell fate, and secondary sexual characteristics adopt either male or female developmental patterns. In birds, although genetic factors control the sex determination program, sex differentiation is sensitive to hormones, which can induce sex reversal when disturbed. Although these sex-reversed birds can form phenotypes opposite to their genotypes, none can experience complete sex reversal or produce offspring under natural conditions. Promising evidence indicates that the incomplete sex reversal is associated with cell autonomous sex identity (CASI) of avian cells, which is controlled by genetic factors. However, studies cannot clearly describe the regulatory mechanism of avian CASI and sex development at present, and these factors require further exploration. In spite of this, the abundant findings of avian sex research have provided theoretical bases for the progress of gender control technologies, which are being improved through interdisciplinary co-operation and will ultimately be employed in poultry production. In this review, we provide an overview of avian sex determination and differentiation and comprehensively summarize the research progress on sex reversal in birds, especially chickens. Importantly, we describe key issues faced by applying gender control systems in poultry production and chronologically summarize the development of avian sex control methods. In conclusion, this review provides unique perspectives for avian sex studies and helps scientists develop more advanced systems for sex regulation in birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Sirui Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Zhang X, Li J, Wang X, Jie Y, Sun C, Zheng J, Li J, Yang N, Chen S. ATAC-seq and RNA-seq analysis unravel the mechanism of sex differentiation and infertility in sex reversal chicken. Epigenetics Chromatin 2023; 16:2. [PMID: 36617567 PMCID: PMC9827654 DOI: 10.1186/s13072-022-00476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Sex determination and differentiation are complex and delicate processes. In female chickens, the process of sex differentiation is sensitive and prone to be affected by the administration of aromatase inhibitors, which result in chicken sex reversal and infertility. However, the molecular mechanisms underlying sex differentiation and infertility in chicken sex reversal remain unclear. Therefore, we established a sex-reversed chicken flock by injecting an aromatase inhibitor, fadrozole, and constructed relatively high-resolution profiles of the gene expression and chromatin accessibility of embryonic gonads. RESULTS We revealed that fadrozole affected the transcriptional activities of several genes, such as DMRT1, SOX9, FOXL2, and CYP19A1, related to sex determination and differentiation, and the expression of a set of gonadal development-related genes, such as FGFR3 and TOX3, by regulating nearby open chromatin regions in sex-reversed chicken embryos. After sexual maturity, the sex-reversed chickens were confirmed to be infertile, and the possible causes of this infertility were further investigated. We found that the structure of the gonads and sperm were greatly deformed, and we identified several promising genes related to spermatogenesis and infertility, such as SPEF2, DNAI1, and TACR3, through RNA-seq. CONCLUSIONS This study provides clear insights into the exploration of potential molecular basis underlying sex differentiation and infertility in sex-reversed chickens and lays a foundation for further research into the sex development of birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jianbo Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuchen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Smirnov AF, Leoke DY, Trukhina AV. Natural and Experimental Sex Reversal in Birds and Other Groups of Vertebrates, with the Exception of Mammals. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Simkins JW, Joseph AE, Bonier F, Benowitz-Fredericks ZM. Prenatal aromatase inhibition alters postnatal immunity in domestic chickens (Gallus gallus). Gen Comp Endocrinol 2020; 294:113497. [PMID: 32360542 DOI: 10.1016/j.ygcen.2020.113497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
In birds, exposure to exogenous testosterone during embryonic development can suppress measures of immune function; however, it is unclear whether these effects are due to direct or indirect action via aromatization. Estradiol (E2) is synthesized from testosterone by the enzyme aromatase, and this conversion is a necessary step in many signaling pathways that are ostensibly testosterone-dependent. Many lines of evidence in mammals indicate that E2 can affect immune function. We tested the hypothesis that some of the immunomodulatory effects observed in response to in ovo testosterone exposure in birds are mediated by conversion to E2 by aromatase, by using fadrozole to inhibit aromatization of endogenous testosterone during a crucial period of embryonic immune system development in domestic chickens (Gallus gallus). We then measured total IgY antibody count, response to PHA challenge, mass of thymus and bursa of Fabricius, and plasma testosterone post-hatch on days 3 and 18. Because testosterone has a reputation for immunosuppression, we predicted that if modulation of an immune measure by testosterone is dependent on aromatization, then inhibition of estrogen production by fadrozole treatment would lead to elevated measures of that parameter. Conversely, if testosterone inhibits an immune measure directly, then fadrozole treatment would likely not alter that parameter. Fadrozole treatment reduced circulating E2 in female embryos, but had no effect on males or on testosterone in either sex. Fadrozole-treated chicks had decreased day 3 plasma IgY antibody titers and a strong trend towards increased day 18 thymic mass. Furthermore, fadrozole treatment generated a positive relationship between testosterone and thymic mass in males, and tended to increase day 18 IgY levels for a given bursal mass in females. There was no effect on PHA response, bursal mass, or plasma testosterone at either age post-hatch. The alteration of several indicators of immune function in fadrozole-treated chicks implicates aromatization as a relevant pathway through which developmental exposure to testosterone can affect immunity in birds.
Collapse
Affiliation(s)
- J W Simkins
- Bucknell University, Department of Biology, 1 Dent Drive, Lewisburg, PA, USA.
| | - A E Joseph
- Bucknell University, Department of Biology, 1 Dent Drive, Lewisburg, PA, USA.
| | - F Bonier
- Queen's University, Department of Biology, 116 Barrie Street, Kingston, ON K7L 3N6, Canada.
| | | |
Collapse
|
7
|
Guioli S, Zhao D, Nandi S, Clinton M, Lovell-Badge R. Oestrogen in the chick embryo can induce chromosomally male ZZ left gonad epithelial cells to form an ovarian cortex that can support oogenesis. Development 2020; 147:dev181693. [PMID: 32001442 PMCID: PMC7055392 DOI: 10.1242/dev.181693] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022]
Abstract
In chickens, the embryonic ovary differentiates into two distinct domains before meiosis: a steroidogenic core (the female medulla), overlain by the germ cell niche (the cortex). The differentiation of the medulla is a cell-autonomous process based on chromosomal sex identity (CASI). In order to address the extent to which cortex differentiation depends on intrinsic or extrinsic factors, we generated models of gonadal intersex by mixing ZW (female) and ZZ (male) cells in gonadal chimeras, or by altering oestrogen levels of ZW and ZZ embryos. We found that CASI does not apply to the embryonic cortex. Both ZW and ZZ cells can form the cortex and this can happen independently of the phenotypic sex of the medulla as long as oestrogen is provided. We also show that the cortex-promoting activity of oestrogen signalling is mediated via estrogen receptor alpha within the left gonad epithelium. However, the presence of a medulla with an 'intersex' or male phenotype may compromise germ cell progression into meiosis, causing cortical germ cells to remain in an immature state in the embryo.
Collapse
Affiliation(s)
| | - Debiao Zhao
- The Roslin Institute and R(D)SVS, Gene Function and Development, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Sunil Nandi
- The Roslin Institute and R(D)SVS, Gene Function and Development, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Michael Clinton
- The Roslin Institute and R(D)SVS, Gene Function and Development, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | | |
Collapse
|
8
|
Hu YQ, Bai DP, Chen Y, Lu ZX, Zheng HB, Xu FQ, Wu Y, Zhu MX, Li A. The Degree of Sex Reversal in Muscovy Ducks (Cairina moschata domestica) Induced by an Aromatase Inhibitor. Sex Dev 2019; 13:137-142. [PMID: 31450230 DOI: 10.1159/000502195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 11/19/2022] Open
Abstract
Under the same feeding conditions, the growth and development of male Muscovy ducks is significantly greater than that of females. Thus, controlling their sex expression can have economic benefits. However, reports on the degree of sex reversal in Muscovy ducks are scarce. In this study, we obtained sex-reversed Muscovy ducks by injecting letrozole before sex differentiation. We analyzed the degree of sex reversal in Muscovy ducks in terms of hormone levels, gonadal tissue development, and growth and found that the estradiol levels of AI-females (letrozole-induced female-to-male sex reversal) were not significantly different from those of normal males (p > 0.05), but the testosterone levels were significantly lower than those in normal males (p < 0.05). AI-female gonad tissue had changed, and the right gonad presented ovotestis tissue. The growth and development of AI-females was significantly less than that of normal males (p < 0.05) but was not significantly different from that of normal females (p > 0.05). Letrozole can induce female Muscovy ducks to convert into males, but the reversal cannot be completed. Thus, further studies are needed to elucidate how to entirely attain the change.
Collapse
|
9
|
Singh AK, Srivastava PP, Verma R, Srivastava SC, Kumar D, Ansari A. Effect of dietary administration of letrozole and tamoxifen on gonadal development, sex differentiation and biochemical changes in common carp (Cyprinus carpio L.). Reprod Fertil Dev 2017; 27:449-57. [PMID: 24411670 DOI: 10.1071/rd13234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/23/2013] [Indexed: 11/23/2022] Open
Abstract
The effect of letrozole and tamoxifen on the specific growth rate (SGR; % day(-1)), gonado-somatic index (GSI), total haemoglobin (g%), gonadal and serum protein as well as lipid, sex differentiation and 17β-oestradiol levels were studied in sexually undifferentiated Cyprinus carpio fingerlings 30 days post fertilisation (30 dpf) for 60 days. Results showed decreased GSI with tamoxifen treatment whereas letrozole increased it. There were reduced protein, lipid, triglyceride and cholesterol levels after treatment with tamoxifen and letrozole during gonadal development. Tamoxifen (200mgkg(-1) feed) induced 82.5% masculinisation, whereas letrozole in the same dose produced 98.5% males. Gonadal 17β-oestradiol significantly declined from 86.0±1.41pg per 100mg (control) to 45.5±1.94pg per 100mg with tamoxifen and 36.0±0.72pg per 100mg with letrozole treatment. Similarly, serum 17β-oestradiol levels also decreased after tamoxifen and letrozole treatments. Testicular development in 37.8% of fish treated with tamoxifen and letrozole was found to be more advanced (spermatocytes) than in the control (spermatogonium); however, there was reduced ovarian growth and increased atresia. It was concluded that letrozole and tamoxifen both significantly affect sex differentiation and gonadal maturity in C. carpio leading to the production of sex-reversed males, yet the effect of letrozole was more potent.
Collapse
Affiliation(s)
- Atul K Singh
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - P P Srivastava
- Biochemistry and Genomics Laboratory of Molecular Biology and Biotechnology Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Rita Verma
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Sharad C Srivastava
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Dinesh Kumar
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Abubakar Ansari
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| |
Collapse
|
10
|
Yang X, Deng J, Zheng J, Xia L, Yang Z, Qu L, Chen S, Xu G, Jiang H, Clinton M, Yang N. A Window of MHM Demethylation Correlates with Key Events in Gonadal Differentiation in the Chicken. Sex Dev 2016; 10:152-8. [DOI: 10.1159/000447659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 11/19/2022] Open
|
11
|
Chen CC, Plikus MV, Tang PC, Widelitz RB, Chuong CM. The Modulatable Stem Cell Niche: Tissue Interactions during Hair and Feather Follicle Regeneration. J Mol Biol 2016; 428:1423-40. [PMID: 26196442 PMCID: PMC4716892 DOI: 10.1016/j.jmb.2015.07.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/27/2022]
Abstract
Hair and feathers are unique because (1) their stem cells are contained within a follicle structure, (2) they undergo cyclic regeneration repetitively throughout life, (3) regeneration occurs physiologically in healthy individuals and (4) regeneration is also induced in response to injury. Precise control of this cyclic regeneration process is essential for maintaining the homeostasis of living organisms. While stem cells are regulated by the intra-follicle-adjacent micro-environmental niche, this niche is also modulated dynamically by extra-follicular macro-environmental signals, allowing stem cells to adapt to a larger changing environment and physiological needs. Here we review several examples of macro-environments that communicate with the follicles: intradermal adipose tissue, innate immune system, sex hormones, aging, circadian rhythm and seasonal rhythms. Related diseases are also discussed. Unveiling the mechanisms of how stem cell niches are modulated provides clues for regenerative medicine. Given that stem cells are hard to manipulate, focusing translational therapeutic applications at the environments appears to be a more practical approach.
Collapse
Affiliation(s)
- Chih-Chiang Chen
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA; Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan 112; Institute of Clinical Medicine and Department of Dermatology, National Yang-Ming University, Taipei, Taiwan 112
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Pin-Chi Tang
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA; Department of Animal Science and Center for the Integrative and Evolutionary, National Chung Hsing University, Taichung, Taiwan 402
| | - Randall B Widelitz
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Cheng Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA; International Laboratory of Wound Repair and Regeneration, Graduated Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan 701; Integrative Stem Cell Center, China Medical University, Taichung, Taiwan 404.
| |
Collapse
|
12
|
Mohammadrezaei M, Toghyani M, Gheisari A, Toghyani M, Eghbalsaied S. Synergistic effect of fadrozole and insulin-like growth factor-I on female-to-male sex reversal and body weight of broiler chicks. PLoS One 2014; 9:e103570. [PMID: 25075864 PMCID: PMC4116201 DOI: 10.1371/journal.pone.0103570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 07/03/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the effects of Fadrozole hydrochloride and recombinant human insulin-like growth factor I (rhIGF-I) on female-to-male sex reversal, hatching traits, and body weight of broiler chickens. On the third day of incubation, fertile eggs were randomly assigned to five experimental groups comprising (i) Fadrozole (0.1 mg/egg), (ii) rhIGF-I (100 ng/egg), (iii) Fadrozole (0.1 mg/egg) + rhIGF-I (100 ng/egg), (iv) vehicle injection (10 mM acetic acid and 0.1% BSA), and (v) non-injected eggs. Eggs in the rhIGF-I-injected groups showed the mode of hatching time at the 480th hour of incubation, 12 hours earlier compared to the other groups, with no statistically significant difference in mortality and hatchability. On Day 1 and 42 of production, 90% of genetically female chicks were masculinized using Fadrozole treatment, while 100% female-to-male phenotypic sex reversal was observed in the Fadrozole+rhIGF-I group. Fadrozole equalized the body weight of both genders, although rhIGF-I was effective on the body weight of male chicks only. Interestingly, combined rhIGF-I and Fadrozole could increase the body weight in both sexes compared to the individual injections (P<0.05). These findings revealed that (i) IGF-I-treated chicken embryos were shown to be an effective option for overcoming the very long chicken deprivation period, (ii) the simultaneous treatment with Fadrozole and IGF-I could maximize the female-to-male sex reversal chance, (iii) the increase in the body weight of masculinized chickens via Fadrozole could be equal to their genetically male counterparts, and (iv) the IGF-I effectiveness, specifically along with the application of aromatase inhibitors in female chicks, indicates that estrogen synthesis could be a stumbling block for the IGF-I action mechanism in female embryos.
Collapse
Affiliation(s)
- Mohammad Mohammadrezaei
- Young Researchers and Elite Club, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
| | - Majid Toghyani
- Department of Animal Science, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
| | - Abbasali Gheisari
- Department of Animal Science, Isfahan Research Center for Natural Resources and Agriculture, Isfahan, Iran
| | - Mehdi Toghyani
- Young Researchers and Elite Club, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
- Department of Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Shahin Eghbalsaied
- Young Researchers and Elite Club, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
- Department of Animal Science, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
- * E-mail:
| |
Collapse
|
13
|
Ayers KL, Sinclair AH, Smith CA. The molecular genetics of ovarian differentiation in the avian model. Sex Dev 2012; 7:80-94. [PMID: 22986345 DOI: 10.1159/000342358] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In birds as in mammals, sex is determined at fertilization by the inheritance of sex chromosomes. However, sexual differentiation - development of a male or female phenotype - occurs during embryonic development. Sex differentiation requires the induction of sex-specific developmental pathways in the gonads, resulting in the formation of ovaries or testes. Birds utilize a different sex chromosome system to that of mammals, where females are the heterogametic sex (carrying Z and W chromosomes), while males are homogametic (carrying 2 Z chromosomes). Therefore, while some genes essential for testis and ovarian development are conserved, important differences also exist. Namely, the key mammalian male-determining factor SRY does not exist in birds, and another transcription factor, DMRT1, plays a central role in testis development. In contrast to our understanding of testis development, ovarian differentiation is less well-characterized. Given the presence of a female-specific chromosome, studies in chicken will provide insight into the induction and function of female-specific gonadal pathways. In this review, we discuss sexual differentiation in chicken embryos, with emphasis on ovarian development. We highlight genes that may play a conserved role in this process, and discuss how interaction between ovarian pathways may be regulated.
Collapse
Affiliation(s)
- K L Ayers
- Murdoch Childrens Research Institute, Melbourne, Vic. 3052, Australia
| | | | | |
Collapse
|
14
|
[Mechanism of avian sex determination and differentiation]. YI CHUAN = HEREDITAS 2012; 34:407-11. [PMID: 22522157 DOI: 10.3724/sp.j.1005.2012.00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Avian sex is determined by genes on the sex chromosomes (ZZ for male and ZW for female). In avian embryo stage, genes on one or two chromosomes control the sex differentiation. Gonad develops to testis in ZZ male and to ovary in ZW female. To date, DMRT1 (Doublesex and mab-3 related transcription factor 1) is considered to be the best candidate gene in controlling the avian gonad differentiation. However, recent study showed that avian sex might be determined by cell autonomous independent of sex hormone signal. Therefore, sex determination gene does not only control the gonadal differentiation, but also control body cells. From this sense, DMRT1 is not the switch gene of avian sex determination. What is the switch factor of avian sex determination, and what is the mechanism of avian sex determination? This review discussed the current progresses on avian sex determination and differentiation from three aspects: W chromosome and ovary development, Z chromosome and testis development, and avian sex determination and cell autonomous.
Collapse
|
15
|
Yang X, Zheng J, Qu L, Chen S, Li J, Xu G, Yang N. Methylation Status of cMHM and Expression of Sex-Specific Genes in Adult Sex-Reversed Female Chickens. Sex Dev 2011; 5:147-54. [DOI: 10.1159/000327712] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2011] [Indexed: 11/19/2022] Open
|
16
|
Valdez MB, Mizutani M, Kinoshita K, Fujiwara A, Yazawa H, Shimada K, Namikawa T, Yamagata T. Differential Development of Sex-related Characters of Chickens from the GSP and PNP/DO Inbred Lines after Left Ovariectomy. J Reprod Dev 2010; 56:154-61. [DOI: 10.1262/jrd.09-156s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Marcos B Valdez
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
|