Gawaz M, Fateh-Moghadam S, Pilz G, Gurland HJ, Werdan K. Severity of multiple organ failure (MOF) but not of sepsis correlates with irreversible platelet degranulation.
Infection 1995;
23:16-23. [PMID:
7744487 DOI:
10.1007/bf01710051]
[Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Multiple hemostatic changes occur in sepsis and multiple organ failure (MOF). To evaluate the role of platelets in patients with sepsis and MOF, we examined changes in surface glycoproteins on circulating platelets of 14 patients with suspected sepsis and MOF. The severity of sepsis and MOF was assessed by the Elebute and APACHE II scoring systems, respectively. Using flow cytometric techniques and platelet specific monoclonal antibodies, platelet surface expression of fibrinogen receptor on GPIIb-IIIa, of von Willebrand Factor receptor GPIb, and of granule glycoproteins (thrombospondin (TSP), GMP-140, GP53) was measured. Plasma membrane expression of GPIIb-IIIa and GPIb on circulating platelets was not affected by sepsis of MOF. Septic patients, however, showed a significantly elevated fibrinogen receptor activity (LIBS1 expression) (p < 0.05) that correlated with severity of disease (r = 0.597, p = 0.043). No significant change in surface expression of granule glycoproteins (TSP, GMP-140, GP53) was noted in septic patients. In contrast, degranulation of granule glycoproteins was significantly elevated in MOF (p < 0.05) which well with severity of MOF (GMP-140, r = 0.611, p = 0.013; TSP, r = 0.643, p = 0.026). We speculate that platelets in sepsis circulate in a hyperaggregable but still reversible state that results in increased risk of microthrombotic events. In the course of the disease, irreversible platelet degranulation of adhesion molecules occurs that may play an important role in the development of MOF.
Collapse