1
|
Foster R, Veras MM, Bachi ALL, do Amaral JB, Yariwake VY, Waked D, Rodrigues ACB, Farrajota M, Pires RP, Pantaleão K, dos Santos JDMB, Damian FH, Saldiva PH, Vaisberg MW. Inflammatory Status in Trained and Untrained Mice at Different Pollution Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:821. [PMID: 39063399 PMCID: PMC11276537 DOI: 10.3390/ijerph21070821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Atmospheric pollution can be defined as a set of changes that occur in the composition of the air, making it unsuitable and/or harmful and thereby generating adverse effects on human health. The regular practice of physical exercise (PE) is associated with the preservation and/or improvement of health; however, it can be influenced by neuroimmunoendocrine mechanisms and external factors such as air pollution, highlighting the need for studies involving the practice of PE in polluted environments. Herein, 24 male C57BL/6 mice were evaluated, distributed into four groups (exposed to a high concentration of pollutants/sedentary, exposed to a high concentration of pollutants/exercised, exposed to ambient air/sedentary, and exposed to ambient air/exercised). The exposure to pollutants occurred in the environmental particle concentrator (CPA) and the physical training was performed on a treadmill specially designed for use within the CPA. Pro- and anti-inflammatory markers in blood and bronchoalveolar lavage (BALF), BALF cellularity, and lung tissue were evaluated. Although the active group exposed to a high concentration of pollution showed a greater inflammatory response, both the correlation analysis and the ratio between pro- and anti-inflammatory cytokines demonstrated that the exercised group presented greater anti-inflammatory activity, suggesting a protective/adaptative effect of exercise when carried out in a polluted environment.
Collapse
Affiliation(s)
- Roberta Foster
- Department of Otorhinolaryngology and Head and Neck Surgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04021-001, Brazil; (R.F.); (J.B.d.A.); (M.F.); (R.P.P.); (K.P.); (M.W.V.)
| | - Mariana Matera Veras
- Experimental Atmospheric Pollution Laboratory, School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (M.M.V.); (V.Y.Y.); (D.W.); (A.C.B.R.)
| | - Andre Luis Lacerda Bachi
- Post-Graduation Program in Health Science, University of Santo Amaro, São Paulo 04743-030, Brazil
| | - Jonatas Bussador do Amaral
- Department of Otorhinolaryngology and Head and Neck Surgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04021-001, Brazil; (R.F.); (J.B.d.A.); (M.F.); (R.P.P.); (K.P.); (M.W.V.)
| | - Victor Yuji Yariwake
- Experimental Atmospheric Pollution Laboratory, School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (M.M.V.); (V.Y.Y.); (D.W.); (A.C.B.R.)
| | - Dunia Waked
- Experimental Atmospheric Pollution Laboratory, School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (M.M.V.); (V.Y.Y.); (D.W.); (A.C.B.R.)
| | - Ana Clara Bastos Rodrigues
- Experimental Atmospheric Pollution Laboratory, School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (M.M.V.); (V.Y.Y.); (D.W.); (A.C.B.R.)
| | - Marilia Farrajota
- Department of Otorhinolaryngology and Head and Neck Surgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04021-001, Brazil; (R.F.); (J.B.d.A.); (M.F.); (R.P.P.); (K.P.); (M.W.V.)
| | - Robério Pereira Pires
- Department of Otorhinolaryngology and Head and Neck Surgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04021-001, Brazil; (R.F.); (J.B.d.A.); (M.F.); (R.P.P.); (K.P.); (M.W.V.)
| | - Karina Pantaleão
- Department of Otorhinolaryngology and Head and Neck Surgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04021-001, Brazil; (R.F.); (J.B.d.A.); (M.F.); (R.P.P.); (K.P.); (M.W.V.)
| | | | - Francys Helen Damian
- Department of Otorhinolaryngology and Head and Neck Surgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04021-001, Brazil; (R.F.); (J.B.d.A.); (M.F.); (R.P.P.); (K.P.); (M.W.V.)
| | - Paulo Hilário Saldiva
- Experimental Atmospheric Pollution Laboratory, School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (M.M.V.); (V.Y.Y.); (D.W.); (A.C.B.R.)
| | - Mauro Walter Vaisberg
- Department of Otorhinolaryngology and Head and Neck Surgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04021-001, Brazil; (R.F.); (J.B.d.A.); (M.F.); (R.P.P.); (K.P.); (M.W.V.)
| |
Collapse
|
2
|
Hapil FZ, Wingender G. The interaction between invariant Natural Killer T cells and the mucosal microbiota. Immunology 2018; 155:164-175. [PMID: 29893412 DOI: 10.1111/imm.12958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
The surface of mammalian bodies is colonized by a multitude of microbial organisms, which under normal conditions support the host and are considered beneficial commensals. This requires, however, that the composition of the commensal microbiota is tightly controlled and regulated. The host immune system plays an important role in the maintenance of this microbiota composition. Here we focus on the contribution of one particular immune cell type, invariant Natural Killer T (iNKT) cells, in this process. The iNKT cells are a unique subset of T cells characterized by two main features. First, they express an invariant T-cell receptor that recognizes glycolipid antigens presented by CD1d, a non-polymorphic major histocompatibility complex class I-like molecule. Second, iNKT cells develop as effector/memory cells and swiftly exert effector functions, like cytokine production and cytotoxicity, after activation. We outline the influence that the mucosal microbiota can have on iNKT cells, and how iNKT cells contribute to the maintenance of the microbiota composition.
Collapse
Affiliation(s)
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center, Balcova/Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| |
Collapse
|
3
|
Papazian D, Hansen S, Würtzen PA. Airway responses towards allergens - from the airway epithelium to T cells. Clin Exp Allergy 2016; 45:1268-87. [PMID: 25394747 DOI: 10.1111/cea.12451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The prevalence of allergic diseases such as allergic rhinitis is increasing, affecting up to 30% of the human population worldwide. Allergic sensitization arises from complex interactions between environmental exposures and genetic susceptibility, resulting in inflammatory T helper 2 (Th2) cell-derived immune responses towards environmental allergens. Emerging evidence now suggests that an epithelial dysfunction, coupled with inherent properties of environmental allergens, can be responsible for the inflammatory responses towards allergens. Several epithelial-derived cytokines, such as thymic stromal lymphopoietin (TSLP), IL-25 and IL-33, influence tissue-resident dendritic cells (DCs) as well as Th2 effector cells. Exposure to environmental allergens does not elicit Th2 inflammatory responses or any clinical symptoms in nonatopic individuals, and recent findings suggest that a nondamaged, healthy epithelium lowers the DCs' ability to induce inflammatory T-cell responses towards allergens. The purpose of this review was to summarize the current knowledge on which signals from the airway epithelium, from first contact with inhaled allergens all the way to the ensuing Th2-cell responses, influence the pathology of allergic diseases.
Collapse
Affiliation(s)
- D Papazian
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,ALK, Hørsholm, Denmark
| | - S Hansen
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
4
|
From the Deep Sea to Everywhere: Environmental Antigens for iNKT Cells. Arch Immunol Ther Exp (Warsz) 2015; 64:291-8. [PMID: 26703211 DOI: 10.1007/s00005-015-0381-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/02/2015] [Indexed: 01/18/2023]
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of innate T cells that share features with innate NK cells and adaptive memory T cells. The first iNKT cell antigen described was found 1993 in a marine sponge and it took over 10 years for other, bacterial antigens to be described. Given the paucity of known bacterial iNKT cell antigens, it appeared as if iNKT cells play a very specialist role in the protection against few, rare and unusual pathogenic bacteria. However, in the last few years several publications painted a very different picture, suggesting that antigens for iNKT cells are found almost ubiquitous in the environment. These environmental iNKT cell antigens can shape the distribution, phenotype and function of iNKT cells. Here, these recent findings will be reviewed and their implications for the field will be outlined.
Collapse
|
5
|
Hoppstädter J, Diesel B, Eifler LK, Schmid T, Brüne B, Kiemer AK. Glucocorticoid-induced leucine zipper is downregulated in human alveolar macrophages upon Toll-like receptor activation. Eur J Immunol 2012; 42:1282-93. [PMID: 22539300 DOI: 10.1002/eji.201142081] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Induction of the glucocorticoid-induced leucine zipper (GILZ) by glucocorticoids plays a role in their antiinflammatory action, whereas GILZ expression is reduced under inflammatory conditions. The mechanisms regulating GILZ expression during inflammation, however, have not yet been characterized. Here, we investigated GILZ expression in human alveolar macrophages (AMs) following Toll-like receptor (TLR) activation. Macrophages were shown to predominantly express GILZ transcript variant 2. Lipopolysaccharide-treated AMs, THP-1 cells, and lungs of lipopolysaccharide-exposed mice displayed decreased GILZ protein and mRNA levels. The effect was strictly dependent on the adapter molecule MyD88, as shown by using specific ligands or a knockdown strategy. Investigations on the functional significance of GILZ downregulation performed by GILZ knockdown revealed a proinflammatory response, as indicated by increased cytokine expression and NF-κB activity. We found that TLR activation reduced GILZ mRNA stability, which was mediated via the GILZ 3'-untranslated region. Finally, involvement of the mRNA-binding protein tristetraprolin (TTP) is suggested, since TTP overexpression or knockdown modulated GILZ expression and TTP was induced in a MyD88-dependent fashion. Taken together, our data show a MyD88- and TTP-dependent GILZ downreg-ulation in human macrophages upon TLR activation. Suppression of GILZ is mediated by mRNA destabilization, which might represent a regulatory mechanism in macrophage activation.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Kim H, Tse K, Levin L, Bernstein D, Reponen T, LeMasters G, Lummus Z, Horner AA. House dust bioactivities predict skin prick test reactivity for children with high risk of allergy. J Allergy Clin Immunol 2012; 129:1529-37.e2. [PMID: 22385634 DOI: 10.1016/j.jaci.2012.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although evidence suggests that ambient exposures to endotoxin and other immunostimulants during early life influence allergic risk, efforts to understand this host-environment relationship have been hampered by a paucity of relevant assays. OBJECTIVES These investigations determined whether parameters of house dust extract (HDE) bioactivity were predictive of allergen skin prick test (SPT) reactivity for infants at high risk of allergy participating in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). METHODS We conducted a nested case-control study, selecting 99 CCAAPS children who had positive SPT results to at least 1 aeroallergen at age 3 years and 101 subjects with negative SPT results. HDEs were prepared from dust samples collected from the subjects' homes at age 1 year. Murine splenocytes and bone marrow-derived dendritic cells were incubated with HDEs, and supernatant cytokine concentrations were determined by means of ELISA. Alternatively, bone marrow-derived dendritic cells were preincubated with HDEs, and then LPS-induced IL-6 responses were assessed. HDE endotoxin levels were determined by using the limulus amebocyte lysate assay. RESULTS HDEs derived from the homes of children with positive (cases) and negative (control subjects) SPT results had similar bioactivities. However, when cases were considered in isolation, HDEs with higher levels of bioactivity were significantly associated with children who had lower numbers of positive SPT results. Analogous statistical analyses did not identify any association between HDE endotoxin levels and the aeroallergen sensitization profiles of children included in this study. CONCLUSION HDE immunostimulatory activities predicted the aeroallergen sensitization status of CCAAPS subjects better than HDE endotoxin levels. These results provide the first published evidence that HDE bioassays have clinical relevance in predicting atopic risk.
Collapse
Affiliation(s)
- Haejin Kim
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Willart M, Hammad H. Lung dendritic cell-epithelial cell crosstalk in Th2 responses to allergens. Curr Opin Immunol 2011; 23:772-7. [PMID: 22074731 DOI: 10.1016/j.coi.2011.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/28/2011] [Indexed: 12/01/2022]
Abstract
Dendritic cells (DC) have been shown to be responsible for the initiation and maintenance of adaptive Th2 responses in asthma. It is increasingly clear that DC functions are strongly influenced by crosstalk with neighboring cells like epithelial cells, which can release a number of innate cytokines promoting Th2 responses. Clinically relevant allergens often interfere directly or indirectly with the innate immune functions of airway epithelial cells and DC. A better understanding of these interactions might lead to a better prevention and ultimately to new treatments for asthma.
Collapse
Affiliation(s)
- Monique Willart
- Laboratory of Immunoregulation and Mucosal Immunology, University of Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | | |
Collapse
|
8
|
Wingender G, Rogers P, Batzer G, Lee MS, Bai D, Pei B, Khurana A, Kronenberg M, Horner AA. Invariant NKT cells are required for airway inflammation induced by environmental antigens. ACTA ACUST UNITED AC 2011; 208:1151-62. [PMID: 21624935 PMCID: PMC3173256 DOI: 10.1084/jem.20102229] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
House dust contains antigens capable of activating mouse and human iNKT cells, contributing to allergen-induced airway inflammation. Invariant NKT cells (iNKT cells) are a unique subset of T lymphocytes that rapidly carry out effector functions. In this study, we report that a majority of sterile house dust extracts (HDEs) tested contained antigens capable of activating mouse and human iNKT cells. HDEs had adjuvant-like properties in an ovalbumin (OVA)-induced asthma model, which were dependent on Vα14i NKT cells, as vaccinated animals deficient for iNKT cells displayed significantly attenuated immune responses and airway inflammation. Furthermore, the administration of HDEs together with OVA mutually augmented the synthesis of cytokines by Vα14i NKT cells and by conventional CD4+ T cells in the lung, demonstrating a profound immune response synergy for both Th2 cytokines and IL-17A. These data demonstrate that iNKT cell antigens are far more widely dispersed in the environment than previously anticipated. Furthermore, as the antigenic activity in different houses varied greatly, they further suggest that iNKT cell responses to ambient antigens, particular to certain environments, might promote sensitization to conventional respiratory allergens.
Collapse
Affiliation(s)
- Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bezemer GFG, Bauer SM, Oberdörster G, Breysse PN, Pieters RHH, Georas SN, Williams MA. Activation of pulmonary dendritic cells and Th2-type inflammatory responses on instillation of engineered, environmental diesel emission source or ambient air pollutant particles in vivo. J Innate Immun 2010; 3:150-66. [PMID: 21099199 DOI: 10.1159/000321725] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/06/2010] [Indexed: 11/19/2022] Open
Abstract
The biological effects of acute particulate air pollution exposure in host innate immunity remain obscure and have relied largely on in vitro models. We hypothesized that single acute exposure to ambient or engineered particulate matter (PM) in the absence of other secondary stimuli would activate lung dendritic cells (DC) in vivo and provide information on the early immunological events of PM exposure and DC activation in a mouse model naïve to prior PM exposure. Activation of purified lung DC was studied following oropharyngeal instillation of ambient particulate matter (APM). We compared the effects of APM exposure with that of diesel-enriched PM (DEP), carbon black particles (CBP) and silver nanoparticles (AgP). We found that PM species induced variable cellular infiltration in the lungs and only APM exposure induced eosinophilic infiltration. Both APM and DEP activated pulmonary DC and promoted a Th2-type cytokine response from naïve CD4+ T cells ex vivo. Cultures of primary peribronchial lymph node cells from mice exposed to APM and DEP also displayed a Th2-type immune response ex vivo. We conclude that exposure of the lower airway to various PM species induces differential immunological responses and immunomodulation of DC subsets. Environmental APM and DEP activated DC in vivo and provoked a Th2 response ex vivo. By contrast, CBP and AgP induced altered lung tissue barrier integrity but failed to stimulate CD4+ T cells as effectively. Our work suggests that respirable pollutants activate the innate immune response with enhanced DC activation, pulmonary inflammation and Th2-immune responsiveness.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Immunotoxicology Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|