1
|
Zannas AS. Emerging evidence linking stress and glucocorticoid signaling with cancer phenotypes. J Transl Med 2024; 22:147. [PMID: 38347561 PMCID: PMC10863226 DOI: 10.1186/s12967-024-04962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Affiliation(s)
- Anthony S Zannas
- Department of Psychiatry, University of North Carolina, 438 Taylor Hall, 109 Mason Farm Rd, Chapel Hill, NC, 27599-7096, USA.
- Department of Genetics, University of North Carolina, 438 Taylor Hall, 109 Mason Farm Rd, Chapel Hill, NC, 27599-7096, USA.
| |
Collapse
|
2
|
Islam MO, Thangaretnam K, Lu H, Peng D, Soutto M, El-Rifai W, Giordano S, Ban Y, Chen X, Bilbao D, Villarino AV, Schürer S, Hosein PJ, Chen Z. Smoking induces WEE1 expression to promote docetaxel resistance in esophageal adenocarcinoma. Mol Ther Oncolytics 2023; 30:286-300. [PMID: 37732296 PMCID: PMC10507159 DOI: 10.1016/j.omto.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) patients have poor clinical outcomes, with an overall 5-year survival rate of 20%. Smoking is a significant risk factor for EAC. The role of WEE1, a nuclear kinase that negatively regulates the cell cycle in normal conditions, in EAC tumorigenesis and drug resistance is not fully understood. Immunohistochemistry staining shows significant WEE1 overexpression in human EAC tissues. Nicotine, nicotine-derived nitrosamine ketone, or 2% cigarette smoke extract treatment induces WEE1 protein expression in EAC, detected by western blot and immunofluorescence staining. qRT-PCR and reporter assay indicates that smoking induces WEE1 expression through miR-195-5p downregulation in EAC. ATP-Glo cell viability and clonogenic assay confirmed that WEE1 inhibition sensitizes EAC cells to docetaxel treatment in vitro. A TE-10 smoking machine with EAC patient-derived xenograft mouse model demonstrated that smoking induces WEE1 protein expression and resistance to docetaxel in vivo. MK-1775 and docetaxel combined treatment improves EAC patient-derived xenograft mouse survival in vivo. Our findings demonstrate, for the first time, that smoking-induced WEE1 overexpression through miRNA dysregulation in EAC plays an essential role in EAC drug resistance. WEE1 inhibition is a promising therapeutic method to overcome drug resistance and target treatment refractory cancer cells.
Collapse
Affiliation(s)
- Md Obaidul Islam
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Krishnapriya Thangaretnam
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Heng Lu
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Dunfa Peng
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Mohammed Soutto
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Wael El-Rifai
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL 33136, USA
| | - Silvia Giordano
- University of Torino, Candiolo Cancer Institute - FPO, IRCCS, 10060 Candiolo, Italy
| | - Yuguang Ban
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Xi Chen
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alejandro V. Villarino
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stephan Schürer
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA
| | - Peter J. Hosein
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Zheng Chen
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Cui Q, Jiang D, Zhang Y, Chen C. The tumor-nerve circuit in breast cancer. Cancer Metastasis Rev 2023; 42:543-574. [PMID: 36997828 PMCID: PMC10349033 DOI: 10.1007/s10555-023-10095-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 04/01/2023]
Abstract
It is well established that innervation is one of the updated hallmarks of cancer and that psychological stress promotes the initiation and progression of cancer. The breast tumor environment includes not only fibroblasts, adipocytes, endothelial cells, and lymphocytes but also neurons, which is increasingly discovered important in breast cancer progression. Peripheral nerves, especially sympathetic, parasympathetic, and sensory nerves, have been reported to play important but different roles in breast cancer. However, their roles in the breast cancer progression and treatment are still controversial. In addition, the brain is one of the favorite sites of breast cancer metastasis. In this review, we first summarize the innervation of breast cancer and its mechanism in regulating cancer growth and metastasis. Next, we summarize the neural-related molecular markers in breast cancer diagnosis and treatment. In addition, we review drugs and emerging technologies used to block the interactions between nerves and breast cancer. Finally, we discuss future research directions in this field. In conclusion, the further research in breast cancer and its interactions with innervated neurons or neurotransmitters is promising in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Qiuxia Cui
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuanqi Zhang
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
| |
Collapse
|
4
|
Kim I, Lee HH, Ko YJ, Chang HE, Cheung DY, Lee BI, Cho YS, Kim JI, Choi MG. Factors associated with the risk of colorectal neoplasia in young adults under age 40. Korean J Intern Med 2022; 37:969-978. [PMID: 35872626 PMCID: PMC9449198 DOI: 10.3904/kjim.2021.506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/02/2022] [Accepted: 02/08/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS Recent epidemiologic studies have shown a continued increase in colorectal cancer incidence among younger adults. Little is known about the factors that contribute to the development of young-onset colorectal neoplasia (CRN). METHODS A cross-sectional analysis was performed for individuals younger than 40 years who underwent colonoscopy in Seoul St. Mary's Hospital and its affiliated health screening center. High-risk CRN was defined as adenoma or sessile serrated lesion ≥ 10 mm, with three or more adenomas, villous histology, high grade dysplasia, or carcinoma. RESULTS Of these 13,621 included participants, 2,023 (14.9%) had one and more CRN. Young patients with CRN tended to be elderly, male, obese, smoker, having a habit of drinking, and having comorbidities such as hypertension, dyslipidemia, diabetes, and chronic kidney disease. In a multivariate analysis adjusted for age, sex, obesity, smoking status, and alcohol intake, old age (odds ratio [OR], 1.086; 95% confidence interval [CI], 1.054 to 1.119), male sex (OR, 1.748; 95% CI, 1.247 to 2.451), obesity (OR, 1.439; 95% CI, 1.133 to 1.828), and smoking (OR, 1.654; 95% CI, 1.287 to 2.127) were independent risk factors for overall CRN. Obesity and smoking as two modifiable factors increased the risk for high-risk CRN even more than for overall CRN (OR, 1.734; 95% CI, 1.168 to 2.575 and OR, 1.797; 95% CI, 1.172 to 2.753, respectively). CONCLUSION Obesity and smoking were modifiable risk factors for CRN in young adults. They increased the risk for highrisk CRN even more than for overall CRN. A colonoscopy might be beneficial for young individuals with these factors.
Collapse
Affiliation(s)
- Ilsoo Kim
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Han Hee Lee
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Jae Ko
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ho Eun Chang
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dae Young Cheung
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bo-In Lee
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Il Kim
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myung-Gyu Choi
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Lopes M, Vieira de Castro J, Pojo M, Gonçalves CS, Martins EP, Coimbra B, Sotiropoulos I, Sousa N, Rodrigues AJ, Costa BM. Chronic Stress Does Not Influence the Survival of Mouse Models of Glioblastoma. Front Oncol 2022; 12:856210. [PMID: 35402232 PMCID: PMC8990973 DOI: 10.3389/fonc.2022.856210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
The existence of a clear association between stress and cancer is still a matter of debate. Recent studies suggest that chronic stress is associated with some cancer types and may influence tumor initiation and patient prognosis, but its role in brain tumors is not known. Glioblastoma (GBM) is a highly malignant primary brain cancer, for which effective treatments do not exist. Understanding how chronic stress, or its effector hormones glucocorticoids (GCs), may modulate GBM aggressiveness is of great importance. To address this, we used both syngeneic and xenograft in vivo orthotopic mouse models of GBM, in immunocompetent C57BL/6J or immunodeficient NSG mice, respectively, to evaluate how different paradigms of stress exposure could influence GBM aggressiveness and animals’ overall survival (OS). Our results demonstrated that a previous exposure to exogenous corticosterone administration, chronic restraint stress, or chronic unpredictable stress do not impact the OS of these mice models of GBM. Concordantly, ex vivo analyses of various GBM-relevant genes showed similar intra-tumor expression levels across all experimental groups. These findings suggest that corticosterone and chronic stress do not significantly affect GBM aggressiveness in murine models.
Collapse
Affiliation(s)
- Marta Lopes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Vieira de Castro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Pojo
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduarda P Martins
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Arese M, Bussolino F, Pergolizzi M, Bizzozero L, Pascal D. Tumor progression: the neuronal input. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:89. [PMID: 29666812 DOI: 10.21037/atm.2018.01.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the challenges of cancer is its heterogeneity and rapid capacity to adapt. Notwithstanding significant progress in the last decades in genomics and precision medicine, new molecular targets and therapies appear highly necessary. One way to approach this complex problem is to consider cancer in the context of its cellular and molecular microenvironment, which includes nerves. The peripheral nerves, the topic of this review, modulate the biological behavior of the cancer cells and influence tumor progression, including the events related to the metastatic spread of the disease. This mechanism involves the release of neurotransmitters directly into the microenvironment and the activation of the corresponding membrane receptors. While this fact appears to complicate further the molecular landscape of cancer, the neurotransmitters are highly investigated molecules, and often are already targeted by well-developed drugs, a fact that can help finding new therapies at a fraction of the cost and time needed for new medicines (through the so-called drug repurposing). Moreover, the modulation of tumor progression by neurotransmitters can probably explain the long-recognized effects of psychological factors on the burden of cancer. We begin with an introduction on the tumor-nervous-connections and a description of the perineural invasion and neoneurogenesis, the two most important interaction patterns of cancer and nerves. Next, we discuss the most recent data that unequivocally demonstrate the necessity of the nervous system for tumor onset and growth. We introduce the molecular players of the tumor-nervous-connections by citing the role of three main families: neurotropic factors, axon guidance molecules, and neurotransmitters. Finally, we review the role the most important neurotransmitters in tumor biology and we conclude by analyzing the significance of the presented data for cancer therapy, with all the potential advantages and caveats.
Collapse
Affiliation(s)
- Marco Arese
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Margherita Pergolizzi
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Laura Bizzozero
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Davide Pascal
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| |
Collapse
|
7
|
Epigenetic programming by stress and glucocorticoids along the human lifespan. Mol Psychiatry 2017; 22:640-646. [PMID: 28289275 DOI: 10.1038/mp.2017.35] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
Psychosocial stress triggers a set of behavioral, neural, hormonal, and molecular responses that can be a driving force for survival when adaptive and time-limited, but may also contribute to a host of disease states if dysregulated or chronic. The beneficial or detrimental effects of stress are largely mediated by the hypothalamic-pituitary axis, a highly conserved neurohormonal cascade that culminates in systemic secretion of glucocorticoids. Glucocorticoids activate the glucocorticoid receptor, a ubiquitous nuclear receptor that not only causes widespread changes in transcriptional programs, but also induces lasting epigenetic modifications in many target tissues. While the epigenome remains sensitive to stressors throughout life, we propose two key principles that may govern the epigenetics of stress and glucocorticoids along the lifespan: first, the presence of distinct life periods, during which the epigenome shows heightened plasticity to stress exposure, such as in early development and at advanced age; and, second, the potential of stress-induced epigenetic changes to accumulate throughout life both in select chromatin regions and at the genome-wide level. These principles have important clinical and translational implications, and they show striking parallels with the existence of sensitive developmental periods and the cumulative impact of stressful experiences on the development of stress-related phenotypes. We hope that this conceptual mechanistic framework will stimulate fruitful research that aims at unraveling the molecular pathways through which our life stories sculpt genomic function to contribute to complex behavioral and somatic phenotypes.
Collapse
|
8
|
Lee HM, Kim CW, Hwang KA, Choi DW, Choi KC. Three components of cigarette smoke altered the growth and apoptosis of metastatic colon cancer cells via inducing the synthesis of reactive oxygen species and endoplasmic reticulum stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:80-9. [PMID: 27262990 DOI: 10.1016/j.etap.2016.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Cigarette smoke (CS) is a well-known risk factor for carcinogenesis and has been found to be related to the occurrence and development of colon cancer. In this study, the effect of formaldehyde (FA), benzene (Bz), and isoprene (IP), which are included in main components of CS, on cell viability and apoptosis of SW620 colorectal cancer cells was examined to identify the connection between CS components and colon cancer. In cell viability assay, FA, Bz, and IP decreased cell viability of SW620 cells in a dose dependent manner. In Western blot assay, the protein expression of cell cycle related genes, cyclin D1 & E1, was decreased by FA, Bz, and IP, which corresponded to their inhibitory effect on cell viability. In addition, FA, Bz, and IP increased the protein expression of pro-apoptotic genes, C/EBP homologous protein (CHOP) and Bax, and reduced the protein expression of anti-apoptotic gene, Bcl-2. In reactive oxygen species (ROS) assay using dichlorofluorescin diacetate (DCFH-DA), FA, Bz, and IP increased the ROS production in SW620 cells. In the measurement of apoptotic cells, the numbers of apoptotic cells were increased by the treatment of FA, Bz, and IP. As CHOP is an endoplasmic reticulum (ER)-stress related apoptosis marker of which production is induced by ROS, it was considered that these CS components induce apoptosis of SW620 cells by increasing ROS synthesis and ER-stress. Taken together, these results showed that CS components, i.e., FA, Bz, and IP, inhibited the cell viability of SW620 cells by down-regulating the protein expression of cyclin D1 & E1 and induced apoptosis of SW620 cells by increasing ROS production and simultaneously activating ER-stress.
Collapse
Affiliation(s)
- Hae-Miru Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Dal-Woong Choi
- Department of Public Health Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
9
|
Gassen NC, Chrousos GP, Binder EB, Zannas AS. Life stress, glucocorticoid signaling, and the aging epigenome: Implications for aging-related diseases. Neurosci Biobehav Rev 2016; 74:356-365. [PMID: 27343999 DOI: 10.1016/j.neubiorev.2016.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
Life stress has been associated with accelerated cellular aging and increased risk for developing aging-related diseases; however, the underlying molecular mechanisms remain elusive. A highly relevant process that may underlie this association is epigenetic regulation. In this review, we build upon existing evidence to propose a model whereby exposure to life stress, in part via its effects on the hypothalamic-pituitary axis and the glucocorticoid signaling system, may alter the epigenetic landscape across the lifespan and, consequently, influence genomic regulation and function in ways that are conducive to the development of aging-related diseases. This model is supported by recent studies showing that life stressors and stress-related phenotypes can accelerate epigenetic aging, a measure that is based on DNA methylation prediction of chronological age and has been associated with several aging-related disease phenotypes. We discuss the implications of this model for the prevention and treatment of aging-related diseases, as well as the challenges and limitations of this line of research.
Collapse
Affiliation(s)
- Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - George P Chrousos
- First Department of Pediatrics, University of Athens Medical School, Athens, Greece
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University Medical School, Atlanta, GA, USA
| | - Anthony S Zannas
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
10
|
Ko CH, Chan RLY, Siu WS, Shum WT, Leung PC, Zhang L, Cho CH. Deteriorating effect on bone metabolism and microstructure by passive cigarette smoking through dual actions on osteoblast and osteoclast. Calcif Tissue Int 2015; 96:389-400. [PMID: 25694359 DOI: 10.1007/s00223-015-9966-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022]
Abstract
There is no clear evidence to show the direct causal relationship between passive cigarette smoking and osteoporosis. Furthermore, the underlying mechanism is unknown. The objective of this study is to demonstrate the effects of long-term passive cigarette smoking on bone metabolism and microstructure by a mouse model and cell culture systems. BALB/c mice were exposed to 2 or 4 % cigarette smoke for 14 weeks. The bone turnover biochemical markers in urine and serum and also the bone micro-architecture by micro-CT were compared with the control group exposed to normal ambient air. In the cell culture experiments, mouse MC3T3-E1 and RAW264.7 cell lines to be employed as osteoblast and osteoclast, respectively, were treated with the sera obtained from 4 % smoking or control mice. Their actions on cell viability, differentiation, and function on these bone cells were assessed. The urinary mineral and deoxypyridinoline (DPD) levels, and also the serum alkaline phosphatase activity, were significantly higher in the 4 % smoking group when compared with the control group, indicating an elevated bone metabolism after cigarette smoking. In addition, femoral osteopenic condition was observed in the 4 % smoking group, as shown by the decrease of relative bone volume and trabecular thickness. In isolated cell studies, osteoblast differentiation and bone formation were inhibited while osteoclast differentiation was increased. The current mouse smoking model and the isolated cell studies demonstrate that passive cigarette smoke could induce osteopenia by exerting a direct detrimental effect on bone cells differentiation and further on bone remodeling process.
Collapse
Affiliation(s)
- Chun Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Han Y, Ling MT, Mao H, Zheng J, Liu M, Lam KT, Liu Y, Tu W, Lau YL. Influenza virus-induced lung inflammation was modulated by cigarette smoke exposure in mice. PLoS One 2014; 9:e86166. [PMID: 24465940 PMCID: PMC3897646 DOI: 10.1371/journal.pone.0086166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/06/2013] [Indexed: 01/24/2023] Open
Abstract
Although smokers have increased susceptibility and severity of seasonal influenza virus infection, there is no report about the risk of 2009 pandemic H1N1 (pdmH1N1) or avian H9N2 (H9N2/G1) virus infection in smokers. In our study, we used mouse model to investigate the effect of cigarette smoke on pdmH1N1 or H9N2 virus infection. Mice were exposed to cigarette smoke for 21 days and then infected with pdmH1N1 or H9N2 virus. Control mice were exposed to air in parallel. We found that cigarette smoke exposure alone significantly upregulated the lung inflammation. Such prior cigarette smoke exposure significantly reduced the disease severity of subsequent pdmH1N1 or H9N2 virus infection. For pdmH1N1 infection, cigarette smoke exposed mice had significantly lower mortality than the control mice, possibly due to the significantly decreased production of inflammatory cytokines and chemokines. Similarly, after H9N2 infection, cigarette smoke exposed mice displayed significantly less weight loss, which might be attributed to lower cytokines and chemokines production, less macrophages, neutrophils, CD4+ and CD8+ T cells infiltration and reduced lung damage compared to the control mice. To further investigate the underlying mechanism, we used nicotine to mimic the effect of cigarette smoke both in vitro and in vivo. Pre-treating the primary human macrophages with nicotine for 72 h significantly decreased their expression of cytokines and chemokines after pdmH1N1 or H9N2 infection. The mice subcutaneously and continuously treated with nicotine displayed significantly less weight loss and lower inflammatory response than the control mice upon pdmH1N1 or H9N2 infection. Moreover, α7 nicotinic acetylcholine receptor knockout mice had more body weight loss than wild-type mice after cigarette smoke exposure and H9N2 infection. Our study provided the first evidence that the pathogenicity of both pdmH1N1 and H9N2 viruses was alleviated in cigarette smoke exposed mice, which might partially be attributed to the immunosuppressive effect of nicotine.
Collapse
Affiliation(s)
- Yan Han
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Man To Ling
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Huawei Mao
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jian Zheng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Ming Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical College, Guangzhou, People's Republic of China
| | - Kwok Tai Lam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Yuan Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- * E-mail: (Y. Lau); (WT)
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- * E-mail: (Y. Lau); (WT)
| |
Collapse
|
12
|
β-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol 2013; 23:533-42. [PMID: 24012659 DOI: 10.1016/j.semcancer.2013.08.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/27/2013] [Indexed: 12/18/2022]
Abstract
β-Adrenoceptors are broadly distributed in various tissues of the body. Stress hormones regulate a panel of important physiological functions and disease states including cancer. Nicotine and its derivatives could stimulate the release of stress hormones from cancer cells, leading to the promotion of cancer development. β-Blockers have been widely used to control hypertension for decades. Recently, these agents could have significant implications in cancer therapy through blockade of adrenoceptors in tumour tissues. In this review, we summarize recent advancements about the influence of stress hormones, nicotine and β-adrenoceptors on cancer cell proliferation, apoptosis, invasion and metastasis, and also tumour vasculature normalization. Relevant signal pathways and potential value of β-blockers in the treatment of cancer are also discussed in this review.
Collapse
|
13
|
Lin Q, Wang F, Yang R, Zheng X, Gao H, Zhang P. Effect of chronic restraint stress on human colorectal carcinoma growth in mice. PLoS One 2013; 8:e61435. [PMID: 23585898 PMCID: PMC3621827 DOI: 10.1371/journal.pone.0061435] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/13/2013] [Indexed: 12/31/2022] Open
Abstract
Stress alters immunological and neuroendocrinological functions. An increasing number of studies indicate that chronic stress can accelerate tumor growth, but its role in colorectal carcinoma (CRC) progression is not well understood. The aim of this study is to investigate the effects of chronic restraint stress (CRS) on CRC cell growth in nude mice and the possible underlying mechanisms. In this study, we showed that CRS increased the levels of plasma catecholamines including epinephrine (E) and norepinephrine (NE), and stimulated the growth of CRC cell-derived tumors in vivo. Treatment with the adrenoceptor (AR) antagonists phentolamine (PHE, α-AR antagonist) and propranolol (PRO, β-AR antagonist) significantly inhibited the CRS-enhanced CRC cell growth in nude mice. In addition, the stress hormones E and NE remarkably enhanced CRC cell proliferation and viability in culture, as well as tumor growth in vivo. These effects were antagonized by the AR antagonists PHE and PRO, indicating that the stress hormone-induced CRC cell proliferation is AR dependent. We also observed that the β-AR antagonists atenolol (ATE, β1- AR antagonist) and ICI 118,551 (ICI, β2- AR antagonist) inhibited tumor cell proliferation and decreased the stress hormone-induced phosphorylation of extracellular signal-regulated kinases-1/2 (ERK1/2) in vitro and in vivo. The ERK1/2 inhibitor U0126 also blocked the function of the stress hormone, suggesting the involvement of ERK1/2 in the tumor-promoting effect of CRS. We conclude that CRS promotes CRC xenograft tumor growth in nude mice by stimulating CRC cell proliferation through the AR signaling-dependent activation of ERK1/2.
Collapse
Affiliation(s)
- Qiang Lin
- Department of Biochemistry and Molecular Cell Biology, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Feifei Wang
- Department of Biochemistry and Molecular Cell Biology, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Rong Yang
- Department of Biochemistry and Molecular Cell Biology, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Xinmin Zheng
- Department of Biochemistry and Molecular Cell Biology, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Huibao Gao
- Department of Biochemistry and Molecular Cell Biology, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
- * E-mail: (PZ); (HBG)
| | - Ping Zhang
- Department of Biochemistry and Molecular Cell Biology, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
- * E-mail: (PZ); (HBG)
| |
Collapse
|
14
|
Tomoda K, Kubo K, Asahara T, Nomoto K, Nishii Y, Yamamoto Y, Yoshikawa M, Kimura H. Suppressed anti-oxidant capacity due to a cellulose-free diet declines further by cigarette smoke in mice. J Toxicol Sci 2012; 37:575-85. [PMID: 22687997 DOI: 10.2131/jts.37.575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dietary fiber, maintaining the gut environment, contributes to better lung function among smokers. This study was aimed to investigate the role of dietary fiber on the anti-oxidant capacity and gut environment during exposure to cigarette smoke. The anti-oxidant capacity as well as caecal levels of organic acids and population of micro-flora in the gut was measured after 4 months' exposure to cigarette smoke in mice (C57BL/6NcrSlc) fed with a cellulose-free diet. Animals were divided into control diet (AIN-93G)/non-smoke, cellulose-free diet/non-smoke, control diet/smoke, and cellulose-free diet/smoke groups. The anti-oxidant capacity in plasma was significantly suppressed by the cellulose-free diet in the non-smoke exposed mice. The suppression in the anti-oxidant capacity further declined following exposure to cigarette smoke. Both these changes in the anti-oxidant capacity were accompanied with changes in some organic acids levels in caecal contents. The anti-oxidant activity was significantly inversely correlated to succinic acid / acetic acid levels balance in caecal contents. In conclusion the cellulose-free diet suppressed the anti-oxidant capacity in mice, and the suppression further decreased by exposure to cigarette smoke. These changes in the anti-oxidant capacity may be related with changes in the gut environment.
Collapse
Affiliation(s)
- Koichi Tomoda
- Second Department of Internal Medicine, Nara Medical University, Nara Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through α7nAChR-mediated MUC4 upregulation. Oncogene 2012; 32:1384-95. [PMID: 22614008 PMCID: PMC3427417 DOI: 10.1038/onc.2012.163] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite evidence that long-term smoking is the leading risk factor for pancreatic malignancies, the underlying mechanism(s) for cigarette-smoke (CS)-induced pancreatic cancer (PC) pathogenesis has not been well-established. Our previous studies revealed an aberrant expression of the MUC4 mucin in PC as compared to the normal pancreas and its association with cancer progression and metastasis. Interestingly, here we explore a potential link between MUC4 expression and smoking-mediated PC pathogenesis and report that both cigarette-smoke-extract (CSE) and nicotine, which is the major component of CS, significantly up-regulates MUC4 in PC cells. This nicotine-mediated MUC4 overexpression was via α7 subunit of nicotinic acetylcholine receptor (nAChR) stimulation and subsequent activation of the JAK2/STAT3 downstream signaling cascade in cooperation with the MEK/ERK1/2 pathway; this effect was blocked by the α7nAChR antagonists, α-bungarotoxin and mecamylamine, and by specific siRNA-mediated STAT3 inhibition. Additionally, we demonstrated that nicotine-mediated MUC4 up-regulation promotes the PC cell migration through the activation of the downstream effectors such as HER2, c-Src and FAK; this effect was attenuated by shRNA-mediated MUC4 abrogation, further implying that these nicotine-mediated pathological effects on PC cells are MUC4 dependent. Furthermore, the in-vivo studies demonstrated a dramatic increase in the mean pancreatic tumor weight [low-dose (100 mg/m3 TSP), p=0.014; high-dose (247 mg/m3 TSP), p=0.02] and significant tumor metastasis to various distant organs in the CS-exposed-mice, orthotopically implanted with luciferase-transfected PC cells, as compared to the sham-controls. Moreover, the CS-exposed mice had elevated levels of serum cotinine [low-dose, 155.88±35.96 ng/ml; high-dose, 216.25±29.95 ng/ml] and increased MUC4, α7nAChR and pSTAT3 expression in the pancreatic tumor tissues. Altogether, our findings revealed for the first time that CS up-regulates the MUC4 mucin in PC via α7nAChR/JAK2/STAT3 downstream signaling cascade, thereby promoting metastasis of pancreatic cancer.
Collapse
|
16
|
Li ZJ, Cho CH. Neurotransmitters, more than meets the eye--neurotransmitters and their perspectives in cancer development and therapy. Eur J Pharmacol 2011; 667:17-22. [PMID: 21664902 DOI: 10.1016/j.ejphar.2011.05.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/11/2011] [Accepted: 05/22/2011] [Indexed: 12/18/2022]
Abstract
The neurotransmitter/receptor system has been shown to modulate various aspects of tumor development including cell proliferation, angiogenesis, invasion, migration and metastasis. It has been found that tumor tissues can not only synthesize and release a wide range of neurotransmitters but also produce different biological effects via respective receptors. These tissues are also innervated by nerve fibers but the biological significance is unknown. Nevertheless neurotransmitters can produce either stimulatory or inhibitory effect in normal and tumor tissues. These effects are dependent on the types of tissues and the kinds of neurotransmitter as well as the subtypes of corresponding receptors being involved. These findings clearly extend the conventional role of neurotransmitters in nervous system to the actions in oncogenesis. In this regard, intervention or stimulation of these neuronal pathways in different cancer diseases would have significant clinical implications in cancer treatments. Here, we summarize the influences of various well-characterized neurotransmitters and their receptors on tumor growth and further discuss the respective possible strategies and perspectives for cancer therapy in the future.
Collapse
Affiliation(s)
- Zhi Jie Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | | |
Collapse
|
17
|
Wong HPS, Ho JWC, Koo MWL, Yu L, Wu WKK, Lam EKY, Tai EKK, Ko JKS, Shin VY, Chu KM, Cho CH. Effects of adrenaline in human colon adenocarcinoma HT-29 cells. Life Sci 2011; 88:1108-12. [PMID: 21565206 DOI: 10.1016/j.lfs.2011.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/24/2011] [Accepted: 04/02/2011] [Indexed: 12/18/2022]
Abstract
AIMS Stress has been implicated in the development of cancers. Adrenaline levels are increased in response to stress. The effects of adrenaline on colon cancer are largely unknown. The aims of the study are to determine the effects of adrenaline in human colon adenocarcinoma HT-29 cells and the possible underlying mechanisms involved. MAIN METHODS The effect of adrenaline on HT-29 cell proliferation was determined by [(3)H] thymidine incorporation assay. Expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) were detected by Western blot. Matrix metalloproteinase-9 (MMP-9) activity and prostaglandin E(2) (PGE(2)) release were determined by zymography and enzyme immunoassay, respectively. KEY FINDINGS Adrenaline stimulated HT-29 cell proliferation. This was accompanied by the enhanced expression of COX-2 and VEGF in HT-29 cells. Adrenaline also upregulated MMP-9 activity and PGE(2) release. Adrenaline stimulated HT-29 cell proliferation which was reversed by COX-2 inhibitor sc-236. COX-2 inhibitor also reverted the action of adrenaline on VEGF expression and MMP-9 activity. Further study was performed to determine the involvement of β-adrenoceptors. The stimulatory action of adrenaline on colon cancer growth was blocked by atenolol and ICI 118,551, a β(1)- and β(2)-selective antagonist, respectively. This signified the role of β-adrenoceptors in this process. In addition, both antagonists also abrogated the stimulating actions of adrenaline on COX-2, VEGF expression, MMP-9 activity and PGE(2) release in HT-29 cells. SIGNIFICANCE These results suggest that adrenaline stimulates cell proliferation of HT-29 cells via both β(1)- and β(2)-adrenoceptors by a COX-2 dependent pathway.
Collapse
Affiliation(s)
- Helen P S Wong
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Do stress responses promote leukemia progression? An animal study suggesting a role for epinephrine and prostaglandin-E2 through reduced NK activity. PLoS One 2011; 6:e19246. [PMID: 21559428 PMCID: PMC3084788 DOI: 10.1371/journal.pone.0019246] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/30/2011] [Indexed: 12/14/2022] Open
Abstract
In leukemia patients, stress and anxiety were suggested to predict poorer prognosis. Oncological patients experience ample physiological and psychological stress, potentially leading to increased secretion of stress factors, including epinephrine, corticosteroids, and prostaglandins. Here we tested whether environmental stress and these stress factors impact survival of leukemia-challenged rats, and studied mediating mechanisms. F344 rats were administered with a miniscule dose of 60 CRNK-16 leukemia cells, and were subjected to intermittent forced swim stress or to administration of physiologically relevant doses of epinephrine, prostaglandin-E2 or corticosterone. Stress and each stress factor, and/or their combinations, doubled mortality rates when acutely applied simultaneously with, or two or six days after tumor challenge. Acute administration of the β-adrenergic blocker nadolol diminished the effects of environmental stress, without affecting baseline survival rates. Prolonged β-adrenergic blockade or COX inhibition (using etodolac) also increased baseline survival rates, possibly by blocking tumor-related or normal levels of catecholamines and prostaglandins. Searching for mediating mechanisms, we found that each of the stress factors transiently suppressed NK activity against CRNK-16 and YAC-1 lines on a per NK basis. In contrast, the direct effects of stress factors on CRNK-16 proliferation, vitality, and VEGF secretion could not explain or even contradicted the in vivo survival findings. Overall, it seems that environmental stress, epinephrine, and prostaglandins promote leukemia progression in rats, potentially through suppressing cell mediated immunity. Thus, patients with hematological malignancies, which often exhibit diminished NK activity, may benefit from extended β-blockade and COX inhibition.
Collapse
|
19
|
Tomoda K, Kubo K, Asahara T, Andoh A, Nomoto K, Nishii Y, Yamamoto Y, Yoshikawa M, Kimura H. Cigarette smoke decreases organic acids levels and population of bifidobacterium in the caecum of rats. J Toxicol Sci 2011; 36:261-6. [DOI: 10.2131/jts.36.261] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Kaoru Kubo
- Laboratory Animal Research Center, Nara Medical University
| | | | - Akira Andoh
- Division of Mucosal Immunology, Graduate School of Medicine, Shiga University of Medical Science
| | - Koji Nomoto
- Yakult Central Institute for Microbiological Research
| | | | | | | | | |
Collapse
|
20
|
Huang RY, Chen GG. Cigarette smoking, cyclooxygenase-2 pathway and cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:158-69. [PMID: 21147199 DOI: 10.1016/j.bbcan.2010.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/23/2010] [Accepted: 11/29/2010] [Indexed: 12/16/2022]
Abstract
Cigarette smoking is a major cause of mortality and morbidity worldwide. Cyclooxygenase (COX) and its derived prostanoids, mainly including prostaglandin E2 (PGE2), thromboxane A2 (TxA2) and prostacyclin (PGI2), have well-known roles in cardiovascular disease and cancer, both of which are associated with cigarette smoking. This article is focused on the role of COX-2 pathway in smoke-related pathologies and cancer. Cigarette smoke exposure can induce COX-2 expression and activity, increase PGE2 and TxA2 release, and lead to an imbalance in PGI2 and TxA2 production in favor of the latter. It exerts pro-inflammatory effects in a PGE2-dependent manner, which contributes to carcinogenesis and tumor progression. TxA2 mediates other diverse biologic effects of cigarette smoking, such as platelet activation, cell contraction and angiogenesis, which may facilitate tumor growth and metastasis in smokers. Among cigarette smoke components, nicotine and its derived nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are the most potent carcinogens. COX-2 and PGE2 have been shown to play a pivotal role in many cancers associated with cigarette smoking, including cancers of lung, gastric and bladder, while the information for the role of TxA2 and PGI2 in smoke-associated cancers is limited. Recent findings from our group have revealed how NNK influences the TxA2 to promote the tumor growth. Better understanding in the above areas may help to generate new therapeutic protocols or to optimize the existing treatment strategy.
Collapse
Affiliation(s)
- Run-Yue Huang
- Department of Surgery, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | |
Collapse
|