1
|
Li S, Zhao G, Han H, Li Y, Li J, Wang J, Cao G, Li X. Genome collinearity analysis illuminates the evolution of donkey chromosome 1 and horse chromosome 5 in perissodactyls: A comparative study. BMC Genomics 2021; 22:665. [PMID: 34521340 PMCID: PMC8442440 DOI: 10.1186/s12864-021-07984-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is important to resolve the evolutionary history of species genomes as it has affected both genome organization and chromosomal architecture. The rapid innovation in sequencing technologies and the improvement in assembly algorithms have enabled the creation of highly contiguous genomes. DNA Zoo, a global organization dedicated to animal conservation, offers more than 150 chromosome-length genome assemblies. This database has great potential in the comparative genomics field. RESULTS Using the donkey (Equus asinus asinus, EAS) genome provided by DNA Zoo as an example, the scaffold N50 length and Benchmarking Universal Single-Copy Ortholog score reached 95.5 Mb and 91.6%, respectively. We identified the cytogenetic nomenclature, corrected the direction of the chromosome-length sequence of the donkey genome, analyzed the genome-wide chromosomal rearrangements between the donkey and horse, and illustrated the evolution of the donkey chromosome 1 and horse chromosome 5 in perissodactyls. CONCLUSIONS The donkey genome provided by DNA Zoo has relatively good continuity and integrity. Sequence-based comparative genomic analyses are useful for chromosome evolution research. Several previously published chromosome painting results can be used to identify the cytogenetic nomenclature and correct the direction of the chromosome-length sequence of new assemblies. Compared with the horse genome, the donkey chromosomes 1, 4, 20, and X have several obvious inversions, consistent with the results of previous studies. A 4.8 Mb inverted structure was first discovered in the donkey chromosome 25 and plains zebra chromosome 11. We speculate that the inverted structure and the tandem fusion of horse chromosome 31 and 4 are common features of non-caballine equids, which supports the correctness of the existing Equus phylogeny to an extent.
Collapse
Affiliation(s)
- Shaohua Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Gaoping Zhao
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Hongmei Han
- Department of Physical Education, Hohhot Minzu College, Hohhot, 010051, China
| | - Yunxia Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Jun Li
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Jinfeng Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Guifang Cao
- College of Veterinary Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China.
| |
Collapse
|
2
|
Brosnahan MM. Genetics, Evolution, and Physiology of Donkeys and Mules. Vet Clin North Am Equine Pract 2019; 35:457-467. [PMID: 31672199 DOI: 10.1016/j.cveq.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The genus Equus is made up of donkeys, horses, and zebras. Despite significant variation in chromosome number across these species, interspecies breeding results in healthy, although infertile, hybrid offspring. Most notable among these are the horse-donkey hybrids, the mule and hinny. Donkeys presently are used for everything from companion animals to beasts of burden. Although closely related from an evolutionary standpoint, differences in anatomy and physiology preclude the assumption that they can be treated identically to the domestic horse. Veterinarians should be aware of these differences and adjust their practice accordingly.
Collapse
Affiliation(s)
- Margaret M Brosnahan
- College of Veterinary Medicine, Midwestern University, 19555 North 59th Avenue, Cactus Wren Hall 336-P, Glendale, AZ 85308, USA.
| |
Collapse
|
3
|
Iannuzzi A, Pereira J, Iannuzzi C, Fu B, Ferguson-Smith M. Pooling strategy and chromosome painting characterize a living zebroid for the first time. PLoS One 2017; 12:e0180158. [PMID: 28700625 PMCID: PMC5507506 DOI: 10.1371/journal.pone.0180158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/10/2017] [Indexed: 11/19/2022] Open
Abstract
We have investigated the complex karyotype of a living zebra-donkey hybrid for the first time using chromosome-specific painting probes produced from flow-sorted chromosomes from a zebra (Equus burchelli) and horse (Equus caballus). As the chromosomes proved difficult to distinguish from one another, a successful new strategy was devised to resolve the difficulty and characterize each chromosome. This was based on selecting five panels of whole chromosome painting probes that could differentiate zebra and donkey chromosomes by labelling the probes with either FITC or Cy3 fluorochromes. Each panel was hybridized sequentially to the same G-Q-banded metaphases and the results combined so that every zebra and donkey chromosome in each suitable metaphase could be identified. A diploid number of 2n = 53, XY was found, containing haploid sets of 22 chromosomes from the zebra and 31 chromosomes from the donkey, without evidence of chromosome rearrangement. This new strategy, developed for the first time, may have several applications in the resolution of other complex hybrid karyotypes and chromosomal aberrations.
Collapse
Affiliation(s)
- Alessandra Iannuzzi
- Laboratory of Animal Cytogenetics and Genomics, National Research Council of Italy, Institute of Animal Production Systems in Mediterranean Environments (ISPAAM), Naples, Italy
- * E-mail:
| | - Jorge Pereira
- Cytocell Ltd., Cambridge Technopark, Cambridge, United Kingdom
| | - Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Beiyuan Fu
- Cytogenetic Facility, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Malcolm Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, University of Cambridge Department of Veterinary Medicine, Cambridge, United Kingdom
| |
Collapse
|
4
|
Dorado J, Anaya G, Bugno-Poniewierska M, Molina A, Mendez-Sanchez A, Ortiz I, Moreno-Millán M, Hidalgo M, Peral García P, Demyda-Peyrás S. First case of sterility associated with sex chromosomal abnormalities in a jenny. Reprod Domest Anim 2016; 52:227-234. [DOI: 10.1111/rda.12884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/27/2016] [Indexed: 12/01/2022]
Affiliation(s)
- J Dorado
- Veterinary Reproduction Group AGR-275; Department of Animal Medicine and Surgery; Veterinary Teaching Hospital; University of Cordoba; Cordoba Spain
| | - G Anaya
- Laboratory of Animal Genomics; MERAGEM AGR-158 Research Group; Department of Genetics; University of Córdoba; Cordoba Spain
| | - M Bugno-Poniewierska
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - A Molina
- Laboratory of Animal Genomics; MERAGEM AGR-158 Research Group; Department of Genetics; University of Córdoba; Cordoba Spain
| | - A Mendez-Sanchez
- Department of Anatomy and Comparative Pathology; University of Cordoba; Cordoba Spain
| | - I Ortiz
- Veterinary Reproduction Group AGR-275; Department of Animal Medicine and Surgery; Veterinary Teaching Hospital; University of Cordoba; Cordoba Spain
| | - M Moreno-Millán
- Laboratory of Applied and Molecular Animal Cytogenetics; MERAGEM AGR-158 Research Group; Department of Genetics; University of Cordoba; Cordoba Spain
| | - M Hidalgo
- Veterinary Reproduction Group AGR-275; Department of Animal Medicine and Surgery; Veterinary Teaching Hospital; University of Cordoba; Cordoba Spain
| | - P Peral García
- Facultad de Ciencias Veterinarias; IGEVET - Instituto de Genética Veterinaria UNLP - CONICET LA PLATA; Universidad Nacional de La Plata; La Plata Argentina
| | - S Demyda-Peyrás
- Facultad de Ciencias Veterinarias; IGEVET - Instituto de Genética Veterinaria UNLP - CONICET LA PLATA; Universidad Nacional de La Plata; La Plata Argentina
| |
Collapse
|
5
|
Robbe D, Carluccio A, Gloria A, Contri A, Ventura M, Catacchio CR, Straticò P, Petrizzi L. Digital Agenesia in Martina Franca Donkey Foal: A Case Report. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2012.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Raimondi E, Piras FM, Nergadze SG, Di Meo GP, Ruiz-Herrera A, Ponsà M, Ianuzzi L, Giulotto E. Polymorphic organization of constitutive heterochromatin in Equus asinus (2n = 62) chromosome 1. Hereditas 2011; 148:110-3. [PMID: 21756256 DOI: 10.1111/j.1601-5223.2011.02218.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the karyotype of Equus asinus (domestic donkey, 2n = 62), non-centromeric heterochromatic bands have been described in subcentromeric and telomeric positions. In particular, chromosome 1 is characterised by heterochromatic bands in the proximal region of the long arm and in the short arm; it has been shown that these regions are polymorphic in size. Here we investigated the variation in the intensity and distribution of fluorescence signals observed on donkey chromosome 1 after in situ hybridization with two DNA probes containing fragments from the two major equine satellite DNA families. Our results show that, in Equus asinus chromosome 1, the amount and distribution of large clusters of satellite DNA can define at least nine polymorphic variants of the constitutive heterochromatin that cannot be detected by C-banding alone.
Collapse
Affiliation(s)
- Elena Raimondi
- Dipartimento di Genetica e Microbiologia Adriano Buzzati-Traverso, Università di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
De Lorenzi L, Genualdo V, Perucatti A, Pia Di Meo G, Molteni L, Iannuzzi L, Parma P. Chromosomal assignment of R-spondin genes in the donkey (Equus asinus, 2n = 62). J Appl Genet 2010; 51:319-21. [PMID: 20720306 DOI: 10.1007/bf03208861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
R-spondins constitute a recently discovered small family of growth factors, and the evidence of their role in several developmental pathways is growing fast. In this work we describe the chromosomal location of the four RSPO genes in the donkey. Using horse BACs, we localized RSPO1 on EAS 5q23, RSPO2 on EAS 12q13, RSPO3 on EAS 24q26, and RSPO4 on EAS 15p13. Moreover, RSPO2, RSPO3, and RSPO4 are the first genes mapped on donkey chromosomes 12, 24, and 15, respectively.
Collapse
Affiliation(s)
- L De Lorenzi
- Department of Animal Science, Milan University, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|