1
|
Farrer RG, Kartje GL. Overexpression of Nogo-A changes nerve growth factor signaling dynamics in PC12 cells. Cell Signal 2024; 127:111569. [PMID: 39675688 DOI: 10.1016/j.cellsig.2024.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
The nerve growth factor (NGF) receptor TrkA is a tightly regulated receptor tyrosine kinase that activates neuronal signaling pathways promoting cell survival in addition to axonal and dendritic outgrowth. Previously, we showed that NGF and TrkA signaling is altered in neuron-like PC12 cells that overexpress Nogo-A, a protein known to influence axonal outgrowth and dendritic arborization associated with neuronal plasticity. In the present report, we provide evidence for changes in NGF-mediated receptor-level and downstream signaling that occur in cells overexpressing Nogo-A. NGF stimulation increased the association of Nogo-A with TrkA, which corresponded to a decrease in sustained phosphorylation of TrkA and its downstream effectors Erk1/2, indicating that Nogo-A plays a role in the temporal regulation of this pathway. Furthermore, co-immunoprecipitation of the p75 neurotrophin receptor (p75NTR) with TrkA was significantly reduced in cells overexpressing Nogo-A, suggesting that Nogo-A blocked this interaction. Analysis of calcium and calmodulin involvement in NGF-induced activation of Erk1/2 revealed a calcium and calmodulin-dependent inhibition of sustained phosphorylation in Nogo-A-overexpressing cells but not in wild type cells, suggesting that Nogo-A facilitated the activation of calcium/calmodulin to alter NGF signaling. Taken together, these results provide evidence for Nogo-A regulation of NGF signaling, in part by modifying calcium and calmodulin-dependent mechanisms.
Collapse
Affiliation(s)
- Robert G Farrer
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL, USA.
| | - Gwendolyn L Kartje
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL, USA; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| |
Collapse
|
2
|
Li SS, Hua XY, Zheng MX, Wu JJ, Ma ZZ, Xing XX, Ma J, Shan CL, Xu JG. Electroacupuncture treatment improves motor function and neurological outcomes after cerebral ischemia/reperfusion injury. Neural Regen Res 2021; 17:1545-1555. [PMID: 34916440 PMCID: PMC8771092 DOI: 10.4103/1673-5374.330617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Electroacupuncture (EA) has been widely used for functional restoration after stroke. However, its role in post-stroke rehabilitation and the associated regulatory mechanisms remain poorly understood. In this study, we applied EA to the Zusanli (ST36) and Quchi (LI11) acupoints in rats with middle cerebral artery occlusion and reperfusion. We found that EA effectively increased the expression of brain-derived neurotrophic factor and its receptor tyrosine kinase B, synapsin-1, postsynaptic dense protein 95, and microtubule-associated protein 2 in the ischemic penumbra of rats with middle cerebral artery occlusion and reperfusion. Moreover, EA greatly reduced the expression of myelin-related inhibitors Nogo-A and NgR in the ischemic penumbra. Tyrosine kinase B inhibitor ANA-12 weakened the therapeutic effects of EA. These findings suggest that EA can improve neurological function after middle cerebral artery occlusion and reperfusion, possibly through regulating the activity of the brain-derived neurotrophic factor/tyrosine kinase B signal pathway. All procedures and experiments were approved by the Animal Research Committee of Shanghai University of Traditional Chinese Medicine, China (approval No. PZSHUTCM200110002) on January 10, 2020.
Collapse
Affiliation(s)
- Si-Si Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science; Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
3
|
Jiang J, Yu Y, Zhang Z, Ji Y, Guo H, Wang X, Yu S. Effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. ACTA ACUST UNITED AC 2021; 54:e10842. [PMID: 34076142 PMCID: PMC8186374 DOI: 10.1590/1414-431x2020e10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
Regeneration of injured peripheral nerves is an extremely complex process. Nogo-A (neurite outgrowth inhibitor-A) inhibits axonal regeneration by interacting with Nogo receptor in the myelin sheath of the central nervous system (CNS). The aim of this study was to investigate the effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. Sprague-Dawley rats (n=96) were randomly divided into 4 groups: control group (control), sciatic nerve transection group (model), immediate repair group (immediate repair), and delayed repair group (delayed repair). The rats were euthanized 1 week and 6 weeks after operation. The injured end tissues of the spinal cord and sciatic nerve were obtained. The protein expressions of Nogo-A and Nogo-66 receptor (NgR) were detected by immunohistochemistry. The protein expressions of Nogo-A, NgR, and Ras homolog family member A (RhoA) were detected by western blot. At 1 week after operation, the pathological changes in the immediate repaired group were less, and the protein expressions of Nogo-A, NgR, and RhoA in the spinal cord and sciatic nerve tissues were decreased (P<0.05) compared with the model group. After 6 weeks, the pathological changes in the immediate repair group and the delayed repair group were alleviated and the protein expressions decreased (P<0.05). The situation of the immediate repair group was better than that of the delayed repair group. Our data suggest that the expression of Nogo-A and its receptor increased after sciatic nerve injury, indicating that Nogo-A and its receptor play an inhibitory role in the repair process of sciatic nerve injury in rats.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Yuanchen Yu
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Zhiwu Zhang
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Yuan Ji
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Hong Guo
- Yantai City Municipal Government Hospital, Yantai, China
| | - Xiaohua Wang
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Shengjun Yu
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| |
Collapse
|
4
|
Martínez-Hernández E, Zeglin A, Almazan E, Perissinotti P, He Y, Koob M, Martin JL, Piedras-Rentería ES. KLHL1 Controls Ca V3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain. Front Mol Neurosci 2020; 12:315. [PMID: 31969803 PMCID: PMC6960199 DOI: 10.3389/fnmol.2019.00315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022] Open
Abstract
Dorsal root ganglion (DRG) neurons process pain signaling through specialized nociceptors located in their peripheral endings. It has long been established low voltage-activated (LVA) CaV3.2 calcium channels control neuronal excitability during sensory perception in these neurons. Silencing CaV3.2 activity with antisense RNA or genetic ablation results in anti-nociceptive, anti-hyperalgesic and anti-allodynic effects. CaV3.2 channels are regulated by many proteins (Weiss and Zamponi, 2017), including KLHL1, a neuronal actin-binding protein that stabilizes channel activity by recycling it back to the plasma membrane through the recycling endosome. We explored whether manipulation of KLHL1 levels and thereby function as a CaV3.2 modifier can modulate DRG excitability and mechanical pain transmission or sensitivity to pain. We first assessed the mechanical sensitivity threshold and DRG properties in the KLHL1 KO mouse model. KO DRG neurons exhibited smaller T-type current density compared to WT without significant changes in voltage dependence, as expected in the absence of its modulator. Western blot analysis confirmed CaV3.2 but not CaV3.1, CaV3.3, CaV2.1, or CaV2.2 protein levels were significantly decreased; and reduced neuron excitability and decreased pain sensitivity were also found in the KLHL1 KO model. Analogously, transient down-regulation of KLHL1 levels in WT mice with viral delivery of anti-KLHL1 shRNA also resulted in decreased pain sensitivity. These two experimental approaches confirm KLHL1 as a physiological modulator of excitability and pain sensitivity, providing a novel target to control peripheral pain.
Collapse
Affiliation(s)
- Elizabeth Martínez-Hernández
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Neuroscience Division of the Cardiovascular Institute, Loyola University Chicago, Maywood, IL, United States
| | - Alissa Zeglin
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Erik Almazan
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| | - Paula Perissinotti
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Neuroscience Division of the Cardiovascular Institute, Loyola University Chicago, Maywood, IL, United States
| | - Yungui He
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Michael Koob
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Jody L. Martin
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Neuroscience Division of the Cardiovascular Institute, Loyola University Chicago, Maywood, IL, United States
| | - Erika S. Piedras-Rentería
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Neuroscience Division of the Cardiovascular Institute, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
5
|
Nogo-A interacts with TrkA to alter nerve growth factor signaling in Nogo-A-overexpressing PC12 cells. Cell Signal 2018; 44:20-27. [PMID: 29325876 DOI: 10.1016/j.cellsig.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/11/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
The Nogo-A protein, originally discovered as a potent myelin-associated inhibitor of neurite outgrowth, is also expressed by certain neurons, especially during development and after injury, but its role in neuronal function is not completely known. In this report, we overexpressed Nogo-A in PC12 cells to use as a model to identify potential neuronal signaling pathways affected by endogenously expressed Nogo-A. Unexpectedly, our results show that viability of Nogo-A-overexpressing cells was reduced progressively due to apoptotic cell death following NGF treatment, but only after 24 h. Inhibitors of neutral sphingomyelinase prevented this loss of viability, suggesting that NGF induced the activation of a ceramide-dependent cell death pathway. Nogo-A over-expression also changed NGF-induced phosphorylation of TrkA at tyrosines 490 and 674/675 from sustained to transient, and prevented the regulated intramembrane proteolysis of p75NTR, indicating that Nogo-A was altering the function of the two neurotrophin receptors. Co-immunoprecipitation studies revealed that there was a physical association between TrkA and Nogo-A which appeared to be dependent on interactions in the Nogo-A-specific region of the protein. Taken together, our results indicate that Nogo-A influences NGF-mediated mechanisms involving the activation of TrkA and its interaction with p75NTR.
Collapse
|
6
|
Nogo-A regulates spatial learning as well as memory formation and modulates structural plasticity in the adult mouse hippocampus. Neurobiol Learn Mem 2017; 138:154-163. [DOI: 10.1016/j.nlm.2016.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/21/2022]
|
7
|
O'Donovan KJ. Intrinsic Axonal Growth and the Drive for Regeneration. Front Neurosci 2016; 10:486. [PMID: 27833527 PMCID: PMC5081384 DOI: 10.3389/fnins.2016.00486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/10/2016] [Indexed: 02/01/2023] Open
Abstract
Following damage to the adult nervous system in conditions like stroke, spinal cord injury, or traumatic brain injury, many neurons die and most of the remaining spared neurons fail to regenerate. Injured neurons fail to regrow both because of the inhibitory milieu in which they reside as well as a loss of the intrinsic growth capacity of the neurons. If we are to develop effective therapeutic interventions that promote functional recovery for the devastating injuries described above, we must not only better understand the molecular mechanisms of developmental axonal growth in hopes of re-activating these pathways in the adult, but at the same time be aware that re-activation of adult axonal growth may proceed via distinct mechanisms. With this knowledge in hand, promoting adult regeneration of central nervous system neurons can become a more tractable and realistic therapeutic endeavor.
Collapse
Affiliation(s)
- Kevin J O'Donovan
- Department of Chemistry and Life Science, United States Military Academy West Point, NY, USA
| |
Collapse
|
8
|
Lynch AM, Cleveland M, Prinjha R, Kumar U, Stubbs R, Wuerthner J. Non-clinical development of ozanezumab: a humanised antibody targeting the amino terminus of neurite outgrowth inhibitor A (Nogo-A). Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00179j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ozanezumab (GSK1223249) is a humanised, Fc-disabled, monoclonal antibody (mAb) which targets the amino terminus of Neurite Outgrowth Inhibitor A (Nogo-A) which is currently being developed for the treatment of amyotrophic lateral sclerosis (ALS).
Collapse
|
9
|
Neutralization of Nogo-A enhances synaptic plasticity in the rodent motor cortex and improves motor learning in vivo. J Neurosci 2014; 34:8685-98. [PMID: 24966370 DOI: 10.1523/jneurosci.3817-13.2014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex.
Collapse
|
10
|
Mironova YA, Giger RJ. Where no synapses go: gatekeepers of circuit remodeling and synaptic strength. Trends Neurosci 2013; 36:363-73. [PMID: 23642707 DOI: 10.1016/j.tins.2013.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 02/07/2023]
Abstract
Growth inhibitory molecules in the adult mammalian central nervous system (CNS) have been implicated in the blocking of axonal sprouting and regeneration following injury. Prominent CNS regeneration inhibitors include Nogo-A, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs), and a key question concerns their physiological role in the naïve CNS. Emerging evidence suggests novel functions in dendrites and at synapses of glutamatergic neurons. CNS regeneration inhibitors target the neuronal actin cytoskeleton to regulate dendritic spine maturation, long-term synapse stability, and Hebbian forms of synaptic plasticity. This is accomplished in part by antagonizing plasticity-promoting signaling pathways activated by neurotrophic factors. Altered function of CNS regeneration inhibitors is associated with mental illness and loss of long-lasting memory, suggesting unexpected and novel physiological roles for these molecules in brain health.
Collapse
Affiliation(s)
- Yevgeniya A Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, 3065 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
11
|
Abstract
Nogo-A is an important axonal growth inhibitor in the adult and developing CNS. In vitro, Nogo-A has been shown to inhibit migration and cell spreading of neuronal and nonneuronal cell types. Here, we studied in vivo and in vitro effects of Nogo-A on vascular endothelial cells during angiogenesis of the early postnatal brain and retina in which Nogo-A is expressed by many types of neurons. Genetic ablation or virus-mediated knock down of Nogo-A or neutralization of Nogo-A with an antibody caused a marked increase in the blood vessel density in vivo. In culture, Nogo-A inhibited spreading, migration, and sprouting of primary brain microvascular endothelial cells (MVECs) in a dose-dependent manner and induced the retraction of MVEC lamellipodia and filopodia. Mechanistically, we show that only the Nogo-A-specific Delta 20 domain exerts inhibitory effects on MVECs, but the Nogo-66 fragment, an inhibitory domain common to Nogo-A, -B, and -C, does not. Furthermore, the action of Nogo-A Delta 20 on MVECs required the intracellular activation of the Ras homolog gene family, member A (Rho-A)-associated, coiled-coil containing protein kinase (ROCK)-Myosin II pathway. The inhibitory effects of early postnatal brain membranes or cultured neurons on MVECs were relieved significantly by anti-Nogo-A antibodies. These findings identify Nogo-A as an important negative regulator of developmental angiogenesis in the CNS. They may have important implications in CNS pathologies involving angiogenesis such as stroke, brain tumors, and retinopathies.
Collapse
|
12
|
Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. J Neurosci 2013; 32:18009-17, 18017a. [PMID: 23238717 DOI: 10.1523/jneurosci.2406-12.2012] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During early postnatal development of the CNS, neuronal networks are configured through the formation, elimination, and remodeling of dendritic spines, the sites of most excitatory synaptic connections. The closure of this critical period for plasticity correlates with the maturation of the extracellular matrix (ECM) and results in reduced dendritic spine dynamics. Chondroitin sulfate proteoglycans (CSPGs) are thought to be the active components of the mature ECM that inhibit functional plasticity in the adult CNS. These molecules are diffusely expressed in the extracellular space or aggregated as perineuronal nets around specific classes of neurons. We used organotypic hippocampal slices prepared from 6-d-old Thy1-YFP mice and maintained in culture for 4 weeks to allow ECM maturation. We performed live imaging of CA1 pyramidal cells to assess the effect of chondroitinase ABC (ChABC)-mediated digestion of CSPGs on dendritic spine dynamics. We found that CSPG digestion enhanced the motility of dendritic spines and induced the appearance of spine head protrusions in a glutamate receptor-independent manner. These changes were paralleled by the activation of β1-integrins and phosphorylation of focal adhesion kinase at synaptic sites, and were prevented by preincubation with a β1-integrin blocking antibody. Interestingly, microinjection of ChABC close to dendritic segments was sufficient to induce spine remodeling, demonstrating that CSPGs located around dendritic spines modulate their dynamics independently of perineuronal nets. This restrictive action of perisynaptic CSPGs in mature neural tissue may account for the therapeutic effects of ChABC in promoting functional recovery in impaired neural circuits.
Collapse
|
13
|
Time course and spatial profile of Nogo-A expression in experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuropathol Exp Neurol 2012; 71:907-20. [PMID: 22964785 DOI: 10.1097/nen.0b013e31826caebe] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Inhibition of the myelin-associated neurite outgrowth inhibitor Nogo-A has been found to be beneficial in experimental autoimmune encephalomyelitis (EAE), but there are little data on its expression dynamics during the disease course. We analyzed Nogo-A mRNA and protein during the course of EAE in 27 C57BL/6 mice and in 8 controls. Histopathologic and molecular analyses were performed on Day 0 (naive), preclinical (Day 10), acute (Days 18-22) and chronic (Day 50) time points. In situ hybridization and real-time polymerase chain reaction analyses revealed reduced Nogo-A mRNA expression at preclinical (p < 0.0001) and acute phases (p < 0.0001), followed by upregulation during the chronic phase (p < 0.0001). Nogo-A mRNA was expressed in neurons and oligodendrocytes. By immunohistochemistry and Western blot, there was increased Nogo-A protein expression (p < 0.001) in the chronic phase. Moreover, spatial differences were observed within EAE lesions. The pattern of Nogo-A protein expression inversely correlated with axonal regeneration growth-associated protein 43-positive axons (60% of which were Nogo-A contact-free during the acute phase) and axonal injury (β-amyloid precursor protein-positive axons). Cortical Nogo-66 receptor protein and mRNA levels increased during the chronic phase. The results indicate that Nogo-A and Nogo receptor are actively regulated in EAE lesions; this may indicate a specific time window for localized axonal regeneration in the acute phase of EAE.
Collapse
|
14
|
The nogo receptor family restricts synapse number in the developing hippocampus. Neuron 2012; 73:466-81. [PMID: 22325200 DOI: 10.1016/j.neuron.2011.11.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2011] [Indexed: 01/23/2023]
Abstract
Neuronal development is characterized by a period of exuberant synaptic growth that is well studied. However, the mechanisms that restrict this process are less clear. Here we demonstrate that glycosylphosphatidylinositol-anchored cell-surface receptors of the Nogo Receptor family (NgR1, NgR2, and NgR3) restrict excitatory synapse formation. Loss of any one of the NgRs results in an increase in synapse number in vitro, whereas loss of all three is necessary for abnormally elevated synaptogenesis in vivo. We show that NgR1 inhibits the formation of new synapses in the postsynaptic neuron by signaling through the coreceptor TROY and RhoA. The NgR family is downregulated by neuronal activity, a response that may limit NgR function and facilitate activity-dependent synapse development. These findings suggest that NgR1, a receptor previously shown to restrict axon growth in the adult, also functions in the dendrite as a barrier that limits excitatory synapse number during brain development.
Collapse
|
15
|
Sarkey JP, Chu M, McShane M, Bovo E, Ait Mou Y, Zima AV, de Tombe PP, Kartje GL, Martin JL. Nogo-A knockdown inhibits hypoxia/reoxygenation-induced activation of mitochondrial-dependent apoptosis in cardiomyocytes. J Mol Cell Cardiol 2011; 50:1044-55. [PMID: 21420413 DOI: 10.1016/j.yjmcc.2011.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 01/15/2023]
Abstract
Programmed cell death of cardiomyocytes following myocardial ischemia increases biomechanical stress on the remaining myocardium, leading to myocardial dysfunction that may result in congestive heart failure or sudden death. Nogo-A is well characterized as a potent inhibitor of axonal regeneration and plasticity in the central nervous system, however, the role of Nogo-A in non-nervous tissues is essentially unknown. In this study, Nogo-A expression was shown to be significantly increased in cardiac tissue from patients with dilated cardiomyopathy and from patients who have experienced an ischemic event. Nogo-A expression was clearly associated with cardiomyocytes in culture and was localized predominantly in the endoplasmic reticulum. In agreement with the findings from human tissue, Nogo-A expression was significantly increased in cultured neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation. Knockdown of Nogo-A in cardiomyocytes markedly attenuated hypoxia/reoxygenation-induced apoptosis, as indicated by the significant reduction of DNA fragmentation, phosphatidylserine translocation, and caspase-3 cleavage, by a mechanism involving the preservation of mitochondrial membrane potential, the inhibition of ROS accumulation, and the improvement of intracellular calcium regulation. Together, these data demonstrate that knockdown of Nogo-A may serve as a novel therapeutic strategy to prevent the loss of cardiomyocytes following ischemic/hypoxic injury.
Collapse
Affiliation(s)
- J P Sarkey
- Department of Cell and Molecular Physiology, Loyola University Medical Center, Maywood, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|