1
|
Roldán E, Reeves ND, Cooper G, Andrews K. Can we achieve biomimetic electrospun scaffolds with gelatin alone? Front Bioeng Biotechnol 2023; 11:1160760. [PMID: 37502104 PMCID: PMC10368888 DOI: 10.3389/fbioe.2023.1160760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction: Gelatin is a natural polymer commonly used in biomedical applications in combination with other materials due to its high biocompatibility, biodegradability, and similarity to collagen, principal protein of the extracellular matrix (ECM). The aim of this study was to evaluate the suitability of gelatin as the sole material to manufacture tissue engineering scaffolds by electrospinning. Methods: Gelatin was electrospun in nine different concentrations onto a rotating collector and the resulting scaffold's mechanical properties, morphology and topography were assessed using mechanical testing, scanning electron microscopy and white light interferometry, respectively. After characterizing the scaffolds, the effects of the concentration of the solvents and crosslinking agent were statistically evaluated with multivariate analysis of variance and linear regressions. Results: Fiber diameter and inter-fiber separation increased significantly when the concentration of the solvents, acetic acid (HAc) and dimethyl sulfoxide (DMSO), increased. The roughness of the scaffolds decreased as the concentration of dimethyl sulfoxide increased. The mechanical properties were significantly affected by the DMSO concentration. Immersed crosslinked scaffolds did not degrade until day 28. The manufactured gelatin-based electrospun scaffolds presented comparable mechanical properties to many human tissues such as trabecular bone, gingiva, nasal periosteum, oesophagus and liver tissue. Discussion: This study revealed for the first time that biomimetic electrospun scaffolds with gelatin alone can be produced for a significant number of human tissues by appropriately setting up the levels of factors and their interactions. These findings also extend statistical relationships to a form that would be an excellent starting point for future research that could optimize factors and interactions using both traditional statistics and machine learning techniques to further develop specific human tissue.
Collapse
Affiliation(s)
- Elisa Roldán
- Department of Engineering, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Neil D. Reeves
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Glen Cooper
- School of Engineering, University of Manchester, Manchester, United Kingdom
| | - Kirstie Andrews
- Department of Engineering, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
2
|
Singh G, Chanda A. Mechanical properties of whole-body soft human tissues: a review. Biomed Mater 2021; 16. [PMID: 34587593 DOI: 10.1088/1748-605x/ac2b7a] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
The mechanical properties of soft tissues play a key role in studying human injuries and their mitigation strategies. While such properties are indispensable for computational modelling of biological systems, they serve as important references in loading and failure experiments, and also for the development of tissue simulants. To date, experimental studies have measured the mechanical properties of peripheral tissues (e.g. skin)in-vivoand limited internal tissuesex-vivoin cadavers (e.g. brain and the heart). The lack of knowledge on a majority of human tissues inhibit their study for applications ranging from surgical planning, ballistic testing, implantable medical device development, and the assessment of traumatic injuries. The purpose of this work is to overcome such challenges through an extensive review of the literature reporting the mechanical properties of whole-body soft tissues from head to toe. Specifically, the available linear mechanical properties of all human tissues were compiled. Non-linear biomechanical models were also introduced, and the soft human tissues characterized using such models were summarized. The literature gaps identified from this work will help future biomechanical studies on soft human tissue characterization and the development of accurate medical models for the study and mitigation of injuries.
Collapse
Affiliation(s)
- Gurpreet Singh
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
| | - Arnab Chanda
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India.,Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS), Delhi, India
| |
Collapse
|
3
|
Robison KM, Conway CK, Desrosiers L, Knoepp LR, Miller KS. Biaxial Mechanical Assessment of the Murine Vaginal Wall Using Extension-Inflation Testing. J Biomech Eng 2018; 139:2648715. [PMID: 28787477 DOI: 10.1115/1.4037559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Indexed: 12/31/2022]
Abstract
Progress toward understanding the underlying mechanisms of pelvic organ prolapse (POP) is limited, in part, due to a lack of information on the biomechanical properties and microstructural composition of the vaginal wall. Compromised vaginal wall integrity is thought to contribute to pelvic floor disorders; however, normal structure-function relationships within the vaginal wall are not fully understood. In addition to the information produced from uniaxial testing, biaxial extension-inflation tests performed over a range of physiological values could provide additional insights into vaginal wall mechanical behavior (i.e., axial coupling and anisotropy), while preserving in vivo tissue geometry. Thus, we present experimental methods of assessing murine vaginal wall biaxial mechanical properties using extension-inflation protocols. Geometrically intact vaginal samples taken from 16 female C57BL/6 mice underwent pressure-diameter and force-length preconditioning and testing within a pressure-myograph device. A bilinear curve fit was applied to the local stress-stretch data to quantify the transition stress and stretch as well as the toe- and linear-region moduli. The murine vaginal wall demonstrated a nonlinear response resembling that of other soft tissues, and evaluation of bilinear curve fits suggests that the vagina exhibits pseudoelasticity, axial coupling, and anisotropy. The protocols developed herein permit quantification of biaxial tissue properties. These methods can be utilized in future studies in order to assess evolving structure-function relationships with respect to aging, the onset of prolapse, and response to potential clinical interventions.
Collapse
Affiliation(s)
- Kathryn M Robison
- Mem. ASME Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118 e-mail:
| | - Cassandra K Conway
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118 e-mail:
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine & Reconstructive Surgery, Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121 e-mail:
| | - Leise R Knoepp
- Department of Female Pelvic Medicine & Reconstructive Surgery, Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121 e-mail:
| | - Kristin S Miller
- Mem. ASME Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118 e-mail:
| |
Collapse
|
4
|
Todros S, Pavan PG, Natali AN. Biomechanical properties of synthetic surgical meshes for pelvic prolapse repair. J Mech Behav Biomed Mater 2015; 55:271-285. [PMID: 26615384 DOI: 10.1016/j.jmbbm.2015.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/27/2022]
Abstract
Synthetic meshes are widely used for surgical repair of different kind of prolapses. In the light of the experience of abdominal wall repair, similar prostheses are currently used in the pelvic region, to restore physiological anatomy after organ prolapse into the vaginal wall, that represent a recurrent dysfunction. For this purpose, synthetic meshes are surgically positioned in contact with the anterior and/or posterior vaginal wall, to inferiorly support prolapsed organs. Nonetheless, while mesh implantation restores physiological anatomy, it is often associated with different complications in the vaginal region. These potentially dangerous effects induce the surgical community to reconsider the safety and efficacy of mesh transvaginal placement. For this purpose, the evaluation of state-of-the-art research may provide the basis for a comprehensive analysis of mesh compatibility and functionality. The aim of this work is to review synthetic surgical meshes for pelvic organs prolapse repair, taking into account the mechanics of mesh material and structure, and to relate them with pelvic and vaginal tissue biomechanics. Synthetic meshes are currently available in different chemical composition, fiber and textile conformations. Material and structural properties are key factors in determining mesh biochemical and mechanical compatibility in vivo. The most significant results on vaginal tissue and surgical meshes mechanical characterization are here reported and discussed. Moreover, computational models of the pelvic region, which could support the surgeon in the evaluation of mesh performances in physiological conditions, are recalled.
Collapse
Affiliation(s)
- S Todros
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, via Marzolo 9, I-35131 Padova, Italy.
| | - P G Pavan
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, via Marzolo 9, I-35131 Padova, Italy
| | - A N Natali
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, via Marzolo 9, I-35131 Padova, Italy
| |
Collapse
|
5
|
Lamblin G, Delorme E, Cosson M, Rubod C. Cystocele and functional anatomy of the pelvic floor: review and update of the various theories. Int Urogynecol J 2015; 27:1297-305. [PMID: 26337427 DOI: 10.1007/s00192-015-2832-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/14/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION AND HYPOTHESIS We updated anatomic theories of pelvic organ support to determine pathophysiology in various forms of cystocele. METHODS PubMed/MEDLINE, ScienceDirect, Cochrane Library, and Web of Science databases were searched using the terms pelvic floor, cystocele, anatomy, connective tissue, endopelvic fascia, and pelvic mobility. We retrieved 612 articles, of which 61 matched our topic and thus were selected. Anatomic structures of bladder support and their roles in cystocele onset were determined on the international anatomic classification; the various anatomic theories of pelvic organ support were reviewed and a synthesis was made of theories of cystocele pathophysiology. RESULTS Anterior vaginal support structures comprise pubocervical fascia, tendinous arcs, endopelvic fascia, and levator ani muscle. DeLancey's theory was based on anatomic models and, later, magnetic resonance imaging (MRI), establishing a three-level anatomopathologic definition of prolapse. Petros's integral theory demonstrated interdependence between pelvic organ support systems, linking ligament-fascia lesions, and clinical expression. Apical cystocele is induced by failure of the pubocervical fascia and insertion of its cervical ring; lower cystocele is induced by pubocervical fascia (medial cystocele) or endopelvic fascia failure at its arcus tendineus fasciae pelvis attachment (lateral cystocele). CONCLUSIONS Improved anatomic knowledge of vaginal wall support mechanisms will improve understanding of cystocele pathophysiology, diagnosis of the various types, and surgical techniques. The two most relevant theories, DeLancey's and Petros's, are complementary, enriching knowledge of pelvic functional anatomy, but differ in mechanism. Three-dimensional digital models could integrate and assess the mechanical properties of each anatomic structure.
Collapse
Affiliation(s)
- Géry Lamblin
- Département de Chirurgie Urogynécologique, Hôpital Femme Mère Enfant, Université Claude Bernard Lyon 1, Villeurbanne, France.
- Faculté de Médecine Henri Warembourg, Université Lille 2, 42 Rue Paul Duez, 59000, Lille, France.
- Department of Urogynecology, Femme Mère Enfant University Hospital, 59 Boulevard Pinel, 69677, Lyon-Bron, France.
| | - Emmanuel Delorme
- Service de Chirurgie Urologique, Hôpital Privé Sainte Marie, 4 Allée Saint Jean des Vignes, 71100, Chalon-sur-Saône, France
| | - Michel Cosson
- Faculté de Médecine Henri Warembourg, Université Lille 2, 42 Rue Paul Duez, 59000, Lille, France
- Clinique de Chirurgie Gynécologique, Hôpital Jeanne de Flandre, Université Lille 2, Avenue E Avinée, 59037, Lille Cedex, France
| | - Chrystèle Rubod
- Faculté de Médecine Henri Warembourg, Université Lille 2, 42 Rue Paul Duez, 59000, Lille, France
- Clinique de Chirurgie Gynécologique, Hôpital Jeanne de Flandre, Université Lille 2, Avenue E Avinée, 59037, Lille Cedex, France
| |
Collapse
|
6
|
Brandão S, Da Roza T, Parente M, Ramos I, Mascarenhas T, Natal Jorge RM. Magnetic resonance imaging of the pelvic floor: from clinical to biomechanical imaging. Proc Inst Mech Eng H 2013; 227:1324-32. [PMID: 24030164 DOI: 10.1177/0954411913502952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article reviews the current role of magnetic resonance imaging in the study of the pelvic floor anatomy and pelvic floor dysfunction. The application of static and dynamic magnetic resonance imaging in the clinical context and for biomechanical simulation modeling is assessed, and the main findings are summarized. Additionally, magnetic resonance-based diffusion tensor imaging is presented as a potential tool to evaluate muscle fiber morphology. In this article, focus is set on pelvic floor muscle damage related to urinary incontinence and pelvic organ prolapse, sometimes as a consequence of vaginal delivery. Modeling applications that evaluate anatomical and physiological properties of pelvic floor are presented to further illustrate their particular characteristics. Finally, finite element method is described as a method for modeling and analyzing pelvic floor structures' biomechanical performance, based on material and behavioral properties of the tissues, and considering pressure loads that mimic real-life conditions such as active contraction or Valsalva maneuver.
Collapse
Affiliation(s)
- Sofia Brandão
- Department of Radiology, Centro Hospitalar de São João-EPE, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
7
|
Mechanical characterization and constitutive modelling of the damage process in rectus sheath. J Mech Behav Biomed Mater 2012; 8:111-22. [DOI: 10.1016/j.jmbbm.2011.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/26/2011] [Accepted: 12/16/2011] [Indexed: 11/23/2022]
|