1
|
Liu RZ, Garg M, Yang XH, Godbout R. Docetaxel-Induced Cell Death Is Regulated by a Fatty Acid-Binding Protein 12-Slug-Survivin Pathway in Prostate Cancer Cells. Int J Mol Sci 2024; 25:9669. [PMID: 39273616 PMCID: PMC11395974 DOI: 10.3390/ijms25179669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Chemotherapy is an important treatment option for advanced prostate cancer, especially for metastatic prostate cancer (PCa). Resistance to first-line chemotherapeutic drugs such as docetaxel often accompanies prostate cancer progression. Attempts to overcome resistance to docetaxel by combining docetaxel with other biological agents have been mostly unsuccessful. A better understanding of the mechanisms underlying docetaxel resistance may provide new avenues for the treatment of advanced PCa. We have previously found that the fatty acid-binding protein 12 (FABP12)-PPARγ pathway modulates lipid-related bioenergetics and PCa metastatic transformation through induction of Slug, a master driver of epithelial-to-mesenchymal transition (EMT). Here, we report that the FABP12-Slug axis also underlies chemoresistance in PCa cells. Cell sensitivity to docetaxel is markedly suppressed in FABP12-expressing cells, along with induction of Survivin, a typical apoptosis inhibitor, and inhibition of cleaved PARP, a hallmark of programmed cell death. Importantly, Slug depletion down-regulates Survivin and restores cell sensitivity to docetaxel in FABP12-expressing cells. Finally, we also show that high levels of Survivin are associated with poor prognosis in PCa patients, with FABP12 status determining its prognostic significance. Our research identifies a FABP12-Slug-Survivin pathway driving docetaxel resistance in PCa cells, suggesting that targeting FABP12 may be a precision approach to improve chemodrug efficacy and curb metastatic progression in PCa.
Collapse
Affiliation(s)
| | | | | | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (R.-Z.L.); (X.-H.Y.)
| |
Collapse
|
2
|
Phongsuwichetsak C, Suksrichavalit T, Chatupheeraphat C, Eiamphungporn W, Yainoy S, Yamkamon V. Diospyros rhodocalyx Kurz induces mitochondrial-mediated apoptosis via BAX, Bcl-2, and caspase-3 pathways in LNCaP human prostate cancer cell line. PeerJ 2024; 12:e17637. [PMID: 38966207 PMCID: PMC11223595 DOI: 10.7717/peerj.17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.
Collapse
Affiliation(s)
- Chayisara Phongsuwichetsak
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Thummaruk Suksrichavalit
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Information, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Vichanan Yamkamon
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
3
|
Lemster AL, Weingart A, Bottner J, Perner S, Sailer V, Offermann A, Kirfel J. Elevated PSPC1 and KDM5C expression indicates poor prognosis in prostate cancer. Hum Pathol 2023; 138:1-11. [PMID: 37209920 DOI: 10.1016/j.humpath.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Prostate cancer (PCa) remains the most commonly diagnosed cancer in men worldwide and is still the second leading cause of cancer-related death. One major cause of PCa development is epigenetic aberration, including histone modification. We have previously demonstrated that Lysine Demethylase 5C (KDM5C) plays an essential role in the development of PCa and drives PCa progression by promoting epithelial-mesenchymal transition. Epigenetic regulators often work in concert, for example, to regulate transcription. We identified Paraspeckle Component 1 (PSPC1) as an interacting protein of KDM5C, suggesting that these proteins might function together in PCa. Here, we systematically investigate the expression patterns of KDM5C and PSPC1 in 2 independent prostate cohorts (432 and 205 prostate tumors in total for PSPC1 and KDM5C, respectively) by immunohistochemistry. We demonstrate that the expression of PSPC1 correlates with that of KDM5C. In addition, PSPC1 is up-regulated in primary and metastatic PCa. Elevated PSPC1 expression correlates with a higher-grade group and an advanced T-stage. Patients with high PSPC1 expression have a worse biochemical recurrence-free survival. In addition, PSPC1 expression is an independent prognostic parameter. Our data indicate that KDM5C and PSPC1 are involved in PCa progression, and therapeutic inhibition of KDM5C and PSPC1 by selective compounds might be a promising approach for the treatment of PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Anika Weingart
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Justus Bottner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Sven Perner
- MVZ HPH Institute of Pathology and Hematology, GmbH, 22547, Hamburg, Germany
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany.
| |
Collapse
|
4
|
Peptide Modification Diminishes HLA Class II-restricted CD4 + T Cell Recognition of Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms232315234. [PMID: 36499557 PMCID: PMC9738740 DOI: 10.3390/ijms232315234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/08/2022] Open
Abstract
Prostate cancer poses an ongoing problem in the western world accounting for significant morbidity and mortality in the male population. Current therapy options are effective in treating most prostate cancer patients, but a significant number of patients progress beyond a manageable disease. For these patients, immunotherapy has emerged as a real option in the treatment of the late-stage metastatic disease. Unfortunately, even the most successful immunotherapy strategies have only led to a four-month increase in survival. One issue responsible for the shortcomings in cancer immunotherapy is the inability to stimulate helper CD4+ T cells via the HLA class II pathway to generate a potent antitumor response. Obstacles to proper HLA class II stimulation in prostate cancer vaccine design include the lack of detectable class II proteins in prostate tumors and the absence of defined class II specific prostate tumor antigens. Here, for the first time, we show that the insertion of a lysosomal thiol reductase (GILT) into prostate cancer cells directly enhances HLA class II antigen processing and results in increased CD4+ T cell activation by prostate cancer cells. We also show that GILT insertion does not alter the expression of prostate-specific membrane antigen (PSMA), an important target in prostate cancer vaccine strategies. Our study suggests that GILT expression enhances the presentation of the immunodominant PSMA459 epitope via the HLA class II pathway. Biochemical analysis showed that the PSMA459 peptide was cysteinylated under a normal physiologic concentration of cystine, and this cysteinylated form of PSMA459 inhibited T cell activation. Taken together, these results suggest that GILT has the potential to increase HLA class II Ag presentation and CD4+ T cell recognition of prostate cancer cells, and GILT-expressing prostate cancer cells could be used in designing cell therapy and/or vaccines against prostate cancer.
Collapse
|
5
|
Zhang D, Wang Y, Liu L, Li Z, Yang S, Zhao W, Wang X, Liao H, Zhou S. Establishment and evaluation of ectopic and orthotopic prostate cancer models using cell sheet technology. Lab Invest 2022; 20:381. [PMID: 36038939 PMCID: PMC9422158 DOI: 10.1186/s12967-022-03575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 08/30/2023]
Abstract
Background The traditional prostate cancer (PCa) model is established by injecting cell suspension and is associated with a low tumor formation rate. Cell sheet technology is one of the advancements in tissue engineering for 3D cell-based therapy. In this study, we established ectopic and orthotopic PCa models by cell sheet technology, and then compared the efficiency of tumor formation with cell suspension injection. Methods DU145 cells were seeded on 35 mm temperature-sensitive dishes to form PCa cell sheets, while the cell suspension with the same cell density was prepared. After transplanting into the nude mice, the tumor volumes were measured every 3 days and the tumor growth curves were conducted. At the time points of 2 weeks and 4 weeks after the transplantation, magnetic resonance imaging (MRI) was used to evaluate the transplanting site and distant metastasis. Finally, the mice were sacrificed, and the related tissues were harvested for the further histological evaluation. Results The orthotopic tumor formation rate of the cell sheet injection group was obviously better than that in cell suspension injection group (100% vs 67%). Compared with cell suspension injection, the tumors of DU145 cell sheet fragments injection had the higher density of micro-vessels, more collagen deposition, and lower apoptosis rate. There was no evidence of metastasis in forelimb, lung and liver was found by MRI and histological tests. Conclusion We successfully cultured the DU145 cell sheet and can be used to establish ectopic and orthotopic PCa tumor-bearing models, which provide an application potential for preclinical drug development, drug-resistance mechanisms and patient individualized therapy.
Collapse
Affiliation(s)
- Dongliang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Lei Liu
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Zeng Li
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Shengke Yang
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Liao
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Shukui Zhou
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
6
|
Rahman MM, Islam MR, Rahman F, Rahaman MS, Khan MS, Abrar S, Ray TK, Uddin MB, Kali MSK, Dua K, Kamal MA, Chellappan DK. Emerging Promise of Computational Techniques in Anti-Cancer Research: At a Glance. Bioengineering (Basel) 2022; 9:bioengineering9080335. [PMID: 35892749 PMCID: PMC9332125 DOI: 10.3390/bioengineering9080335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Research on the immune system and cancer has led to the development of new medicines that enable the former to attack cancer cells. Drugs that specifically target and destroy cancer cells are on the horizon; there are also drugs that use specific signals to stop cancer cells multiplying. Machine learning algorithms can significantly support and increase the rate of research on complicated diseases to help find new remedies. One area of medical study that could greatly benefit from machine learning algorithms is the exploration of cancer genomes and the discovery of the best treatment protocols for different subtypes of the disease. However, developing a new drug is time-consuming, complicated, dangerous, and costly. Traditional drug production can take up to 15 years, costing over USD 1 billion. Therefore, computer-aided drug design (CADD) has emerged as a powerful and promising technology to develop quicker, cheaper, and more efficient designs. Many new technologies and methods have been introduced to enhance drug development productivity and analytical methodologies, and they have become a crucial part of many drug discovery programs; many scanning programs, for example, use ligand screening and structural virtual screening techniques from hit detection to optimization. In this review, we examined various types of computational methods focusing on anticancer drugs. Machine-based learning in basic and translational cancer research that could reach new levels of personalized medicine marked by speedy and advanced data analysis is still beyond reach. Ending cancer as we know it means ensuring that every patient has access to safe and effective therapies. Recent developments in computational drug discovery technologies have had a large and remarkable impact on the design of anticancer drugs and have also yielded useful insights into the field of cancer therapy. With an emphasis on anticancer medications, we covered the various components of computer-aided drug development in this paper. Transcriptomics, toxicogenomics, functional genomics, and biological networks are only a few examples of the bioinformatics techniques used to forecast anticancer medications and treatment combinations based on multi-omics data. We believe that a general review of the databases that are now available and the computational techniques used today will be beneficial for the creation of new cancer treatment approaches.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Shajib Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Sayedul Abrar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Most. Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence:
| |
Collapse
|
7
|
Kwan KH, Burvenich IJG, Centenera MM, Goh YW, Rigopoulos A, Dehairs J, Swinnen JV, Raj GV, Hoy AJ, Butler LM, Scott AM, White JM, Ackermann U. Synthesis and fluorine-18 radiolabeling of a phospholipid as a PET imaging agent for prostate cancer. Nucl Med Biol 2021; 93:37-45. [PMID: 33310350 PMCID: PMC8071757 DOI: 10.1016/j.nucmedbio.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Altered lipid metabolism and subsequent changes in cellular lipid composition have been observed in prostate cancer cells, are associated with poor clinical outcome, and are promising targets for metabolic therapies. This study reports for the first time on the synthesis of a phospholipid radiotracer based on the phospholipid 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine (PC44:12) to allow tracking of polyunsaturated lipid tumor uptake via PET imaging. This tracer may aid in the development of strategies to modulate response to therapies targeting lipid metabolism in prostate cancer. METHODS Lipidomics analysis of prostate tumor explants and LNCaP tumor cells were used to identify PC44:12 as a potential phospholipid candidate for radiotracer development. Synthesis of phosphocholine precursor and non-radioactive standard were optimised using click chemistry. The biodistribution of a fluorine-18 labeled analogue, N-{[4-(2-[18F]fluoroethyl)-2,3,4-triazol-1-yl]methyl}-1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine ([18F]2) was determined in LNCaP prostate tumor-bearing NOD SCID gamma mice by ex vivo biodistribution and PET imaging studies and compared to biodistribution of [18F]fluoromethylcholine. RESULTS [18F]2 was produced with a decay-corrected yield of 17.8 ± 3.7% and an average radiochemical purity of 97.00 ± 0.89% (n = 6). Molar activity was 85.1 ± 3.45 GBq/μmol (2300 ± 93 mCi/μmol) and the total synthesis time was 2 h. Ex vivo biodistribution data demonstrated high liver uptake (41.1 ± 9.2%ID/g) and high splenic uptake (10.9 ± 9.1%ID/g) 50 min post-injection. Ex vivo biodistribution showed low absolute tumor uptake of [18F]2 (0.8 ± 0.3%ID/g). However, dynamic PET imaging demonstrated an increase over time of the relative tumor-to-muscle ratio with a peak of 2.8 ± 0.5 reached 1 h post-injection. In contrast, dynamic PET of [18F]fluoromethylcholine demonstrated no increase in tumor-to-muscle ratios due to an increase in both tumor and muscle over time. Absolute uptake of [18F]fluoromethylcholine was higher and peaked at 60 min post injection (2.25 ± 0.29%ID/g) compared to [18F]2 (1.44 ± 0.06%ID/g) during the 1 h dynamic scan period. CONCLUSIONS AND ADVANCES IN KNOWLEDGE This study demonstrates the ability to radiolabel phospholipids and indicates the potential to monitor the in vivo distribution of phospholipids using fluorine-18 based PET.
Collapse
Affiliation(s)
- Kim H Kwan
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Ingrid J G Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia.
| | - Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Yit Wooi Goh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ganesh V Raj
- Department of Urology, UT Southwestern Medical Center at Dallas, TX, USA; Department of Pharmacology, UT Southwestern Medical Center at Dallas, TX, USA
| | - Andrew J Hoy
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia; Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Australia; Department of Medicine, Melbourne University, Melbourne, Australia
| | - Jonathan M White
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Uwe Ackermann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia; Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Australia; Department of Medicine, Melbourne University, Melbourne, Australia.
| |
Collapse
|
8
|
Liu RZ, Godbout R. An Amplified Fatty Acid-Binding Protein Gene Cluster in Prostate Cancer: Emerging Roles in Lipid Metabolism and Metastasis. Cancers (Basel) 2020; 12:E3823. [PMID: 33352874 PMCID: PMC7766576 DOI: 10.3390/cancers12123823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Treatment for early stage and localized prostate cancer (PCa) is highly effective. Patient survival, however, drops dramatically upon metastasis due to drug resistance and cancer recurrence. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. It is therefore crucial to decipher the key genetic alterations and relevant molecular pathways driving PCa metastatic progression so that predictive biomarkers and precise therapeutic targets can be developed. Through PCa cohort analysis, we found that a fatty acid-binding protein (FABP) gene cluster (containing five FABP family members) is preferentially amplified and overexpressed in metastatic PCa. All five FABP genes reside on chromosome 8 at 8q21.13, a chromosomal region frequently amplified in PCa. There is emerging evidence that these FABPs promote metastasis through distinct biological actions and molecular pathways. In this review, we discuss how these FABPs may serve as drivers/promoters for PCa metastatic transformation using patient cohort analysis combined with a review of the literature.
Collapse
Affiliation(s)
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| |
Collapse
|
9
|
Lounis MA, Péant B, Leclerc-Desaulniers K, Ganguli D, Daneault C, Ruiz M, Zoubeidi A, Mes-Masson AM, Saad F. Modulation of de Novo Lipogenesis Improves Response to Enzalutamide Treatment in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12113339. [PMID: 33187317 PMCID: PMC7698241 DOI: 10.3390/cancers12113339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Prostate cancer cells produce lipids via the activation of a specific pathway called fatty acid synthesis, also known as De novo lipogenesis. This pathway is essential for the survival and growth of most types of cancer cells, including prostate cancer. In our study, we showed that prostate cancer cells activate this lipid synthesis pathway to become more aggressive and develop resistance to commonly used therapeutic agents for advanced prostate cancer such as enzalutamide, an effective and commonly used androgen receptor (AR) targeted agent. Interestingly, by combining enzalutamide with a lipid synthesis pathway inhibitor, we were able to show that growth of prostate cancer tumors was more effectively reduced than with either agent alone. We also showed that this combination led to cell stress and death by changing the lipid content in the cell. These important findings could lead to new therapeutic strategies combining effective AR targeted therapies with lipid synthesis inhibitors for the treatment of advanced prostate cancer. Abstract De novo lipogenesis (DNL) is now considered as a hallmark of cancer. The overexpression of key enzymes of DNL is characteristic of both primary and advanced disease and may play an important role in resistance to therapies. Here, we showed that DNL is highly enhanced in castrate resistant prostate cancer (CRPC) cells compared to hormone sensitive and enzalutamide resistant cells. This observation suggests that this pathway plays an important role in the initiation of aggressive prostate cancer and in the development of enzalutamide resistance. Importantly, here we show that both prostate cancer cells sensitive and resistant to enzalutamide are dependent on DNL to proliferate. We next combined enzalutamide with an inhibitor of Stearoyl CoA Desaturase 1 (SCD1), an important enzyme in DNL, and observed significantly reduced tumor growth caused by the important change in tumoral lipid desaturation. Our findings suggest that the equilibrium between monounsaturated fatty acids and saturated fatty acids is essential in the establishment of the more aggressive prostate cancer phenotype and that the combination therapy induces a disruption of this equilibrium leading to an important decrease of cell proliferation. These findings provide new insights into the role of DNL in the progression of prostate cancer cells. The study also provides the rationale for the use of an inhibitor of SCD1 in combination with enzalutamide to improve response, delay enzalutamide resistance and improve disease free progression.
Collapse
Affiliation(s)
- Mohamed Amine Lounis
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Benjamin Péant
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Kim Leclerc-Desaulniers
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Dwaipayan Ganguli
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (D.G.); (A.Z.)
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Caroline Daneault
- Institut de Cardiologie de Montréal, Montreal, QC H1T 1C8, Canada; (C.D.); (M.R.)
| | - Matthieu Ruiz
- Institut de Cardiologie de Montréal, Montreal, QC H1T 1C8, Canada; (C.D.); (M.R.)
- Département de Nutrition, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (D.G.); (A.Z.)
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anne-Marie Mes-Masson
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Médecine, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
| | - Fred Saad
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Chirurgie, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
- Correspondence:
| |
Collapse
|
10
|
Liu RZ, Choi WS, Jain S, Dinakaran D, Xu X, Han WH, Yang XH, Glubrecht DD, Moore RB, Lemieux H, Godbout R. The FABP12/PPARγ pathway promotes metastatic transformation by inducing epithelial-to-mesenchymal transition and lipid-derived energy production in prostate cancer cells. Mol Oncol 2020; 14:3100-3120. [PMID: 33031638 PMCID: PMC7718947 DOI: 10.1002/1878-0261.12818] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Early stage localized prostate cancer (PCa) has an excellent prognosis; however, patient survival drops dramatically when PCa metastasizes. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. Here, we examine the role of a new member of the fatty acid‐binding protein (FABP) family, FABP12, in PCa progression. FABP12 is preferentially amplified and/or overexpressed in metastatic compared to primary tumors from both PCa patients and xenograft animal models. We show that FABP12 concurrently triggers metastatic phenotypes (induced epithelial‐to‐mesenchymal transition (EMT) leading to increased cell motility and invasion) and lipid bioenergetics (increased fatty acid uptake and accumulation, increased ATP production from fatty acid β‐oxidation) in PCa cells, supporting increased reliance on fatty acids for energy production. Mechanistically, we show that FABP12 is a driver of PPARγ activation which, in turn, regulates FABP12's role in lipid metabolism and PCa progression. Our results point to a novel role for a FABP‐PPAR pathway in promoting PCa metastasis through induction of EMT and lipid bioenergetics.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Saket Jain
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Deepak Dinakaran
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Xia Xu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Xiao-Hong Yang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Darryl D Glubrecht
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Ronald B Moore
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
12
|
Lai GR, Lee YF, Yan SJ, Ting HJ. Active vitamin D induces gene-specific hypomethylation in prostate cancer cells developing vitamin D resistance. Am J Physiol Cell Physiol 2020; 318:C836-C847. [PMID: 32159363 DOI: 10.1152/ajpcell.00522.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is a leading cause of cancer death in men. Despite the antiproliferative effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] on PCa, accumulating evidence indicates that 1,25(OH)2D3 promotes cancer progression by increasing genome plasticity. Our investigation of epigenetic changes associated with vitamin D insensitivity found that 1,25(OH)2D3 treatment reduced the expression levels and activities of DNA methyltransferases 1 and 3B (DNMT1 and DNMT3B, respectively). In silico analysis and reporter assay confirmed that 1,25(OH)2D3 downregulated transcriptional activation of the DNMT3B promoter and upregulated microRNAs targeting the 3'-untranslated regions of DNMT3B. We then profiled DNA methylation in the vitamin D-resistant PC-3 cells and a resistant PCa cell model generated by long-term 1,25(OH)2D3 exposure. Several candidate genes were found to be hypomethylated and overexpressed in vitamin D-resistant PCa cells compared with vitamin D-sensitive cells. Most of the identified genes were associated with mammalian target of rapamycin (mTOR) signaling activation, which is known to promote cancer progression. Among them, we found that inhibition of ribosomal protein S6 kinase A1 (RPS6KA1) promoted vitamin D sensitivity in PC-3 cells. Furthermore, The Cancer Genome Atlas (TCGA) prostate cancer data set demonstrated that midline 1 (MID1) expression is positively correlated with tumor stage. Overall, our study reveals an inhibitory mechanism of 1,25(OH)2D3 on DNMT3B, which may contribute to vitamin D resistance in PCa.
Collapse
Affiliation(s)
- Guan-Rong Lai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yi-Fen Lee
- Department of Urology, Pathology, and Wilmot Cancer Cancer, University of Rochester, Rochester, New York
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Huei-Ju Ting
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan, Republic of China
| |
Collapse
|
13
|
Miranda-Gonçalves V, Lameirinhas A, Henrique R, Baltazar F, Jerónimo C. The metabolic landscape of urological cancers: New therapeutic perspectives. Cancer Lett 2020; 477:76-87. [PMID: 32142920 DOI: 10.1016/j.canlet.2020.02.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023]
Abstract
Deregulation of cell metabolism is an established cancer hallmark that contributes to tumor initiation and progression, as well as tumor heterogeneity. In solid tumors, alterations in different metabolic pathways, including glycolysis, pentose phosphate pathway, glutaminolysis and fatty acid metabolism, support the high proliferative rates and macromolecule biosynthesis of cancer cells. Despite advances in therapy, urothelial tumors still exhibit high recurrence and mortality rates, especially in advanced stages of disease. These tumors harbor gene mutations and expression patterns which play an important role in metabolic reprogramming. Taking into account the unique metabolic features underlying carcinogenesis in these cancers, new and promising therapeutic targets based on metabolic alterations must be considered. Furthermore, the combination of metabolic inhibitors with conventional targeted therapies may improve effectiveness of treatments. This review will summarize the metabolic alterations present in urological tumors and the results with metabolic inhibitors currently available.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal.
| | - Ana Lameirinhas
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal.
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto (ICBAS-UP), 4050-313, Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072, Porto, Portugal.
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto (ICBAS-UP), 4050-313, Porto, Portugal.
| |
Collapse
|
14
|
AICAR Induces Apoptosis and Inhibits Migration and Invasion in Prostate Cancer Cells Through an AMPK/mTOR-Dependent Pathway. Int J Mol Sci 2019; 20:ijms20071647. [PMID: 30987073 PMCID: PMC6480054 DOI: 10.3390/ijms20071647] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
Current clinical challenges of prostate cancer management are to restrict tumor growth and prohibit metastasis. AICAR (5-aminoimidazole-4-carbox-amide-1-β-d-ribofuranoside), an AMP-activated protein kinase (AMPK) agonist, has demonstrated antitumor activities for several types of cancers. However, the activity of AICAR on the cell growth and metastasis of prostate cancer has not been extensively studied. Herein we examine the effects of AICAR on the cell growth and metastasis of prostate cancer cells. Cell growth was performed by MTT assay and soft agar assay; cell apoptosis was examined by Annexin V/propidium iodide (PI) staining and poly ADP ribose polymerase (PARP) cleavage western blot, while cell migration and invasion were evaluated by wound-healing assay and transwell assay respectively. Epithelial–mesenchymal transition (EMT)-related protein expression and AMPK/mTOR-dependent signaling axis were analyzed by western blot. In addition, we also tested the effect of AICAR on the chemosensitivity to docetaxel using MTT assay. Our results indicated that AICAR inhibits cell growth in prostate cancer cells, but not in non-cancerous prostate cells. In addition, our results demonstrated that AICAR induces apoptosis, attenuates transforming growth factor (TGF)-β-induced cell migration, invasion and EMT-related protein expression, and enhances the chemosensitivity to docetaxel in prostate cancer cells through regulating the AMPK/mTOR-dependent pathway. These findings support AICAR as a potential therapeutic agent for the treatment of prostate cancer.
Collapse
|
15
|
Chen Q, Li Y, Zhou X, Li R. Oxibendazole inhibits prostate cancer cell growth. Oncol Lett 2017; 15:2218-2226. [PMID: 29434928 PMCID: PMC5776919 DOI: 10.3892/ol.2017.7579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies among men and is the second leading cause of cancer-associated mortality in the developed world. Androgen deprivation therapy (ADT) is the most common treatment for PCa. However, the majority of androgen-sensitive PCa patients will eventually develop resistance to ADT and the disease will become androgen-independent. There is, therefore, an immediate requirement to develop effective therapeutic techniques towards the treatment of recurrent PCa. Oxibendazole (OBZ) is an anthelmintic drug that has also shown promise in the treatment of malignancies. In the present study, the capability of OBZ to repress the growth of PCa cells was assessed in human androgen-independent PCa 22Rv1 and PC-3 cell lines. The growth of the 22Rv1 and PC-3 cell lines, as assessed with a trypan blue exclusion assay, was markedly inhibited by OBZ treatment in vitro, with half-maximal inhibitory concentration values of 0.25 and 0.64 µM, respectively. The mean size of 22Rv1 tumors in nude mice treated with OBZ (25 mg/kg/day) was 47.96% smaller than that of the control mice. Treatment with OBZ increased the expression of microRNA-204 (miR-204), as determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and the level of p53 as determined with western blotting, two well-characterized tumor suppressor genes. When miR-204 expression was knocked down by introduction of an miR-204 inhibitor, the inhibitory effect of OBZ was markedly reduced; however, when it was overexpressed, the inhibitory efficiency of OBZ was markedly higher, indicating that upregulation of miR-204 is key for the efficacy of OBZ. Additionally, OBZ was demonstrated with RT-qPCR to repress the expression of the androgen receptor, and by western blotting to reduce prostate-specific androgen in 22Rv1 cells. The results suggest that OBZ has potential for clinical use in the treatment of recurrent PCa.
Collapse
Affiliation(s)
- Qiaoli Chen
- School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Yuhua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China
| | - Xiaoyu Zhou
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China
| | - Runsheng Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China
| |
Collapse
|
16
|
Ingersoll MA, Miller DR, Martinez O, Wakefield CB, Hsieh KC, Simha MV, Kao CL, Chen HT, Batra SK, Lin MF. Statin derivatives as therapeutic agents for castration-resistant prostate cancer. Cancer Lett 2016; 383:94-105. [PMID: 27687622 DOI: 10.1016/j.canlet.2016.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 12/21/2022]
Abstract
Despite recent advances in modern medicine, castration-resistant prostate cancer remains an incurable disease. Subpopulations of prostate cancer cells develop castration-resistance by obtaining the complete steroidogenic ability to synthesize androgens from cholesterol. Statin derivatives, such as simvastatin, inhibit cholesterol biosynthesis and may reduce prostate cancer incidence as well as progression to advanced, metastatic phenotype. In this study, we demonstrate novel simvastatin-related molecules SVA, AM1, and AM2 suppress the tumorigenicity of prostate cancer cell lines including androgen receptor-positive LNCaP C-81 and VCaP as well as androgen receptor-negative PC-3 and DU145. This is achieved through inhibition of cell proliferation, colony formation, and migration as well as induction of S-phase cell-cycle arrest and apoptosis. While the compounds effectively block androgen receptor signaling, their mechanism of inhibition also includes suppression of the AKT pathway, in part, through disruption of the plasma membrane. SVA also possess an added effect on cell growth inhibition when combined with docetaxel. In summary, of the compounds studied, SVA is the most potent inhibitor of prostate cancer cell tumorigenicity, demonstrating its potential as a promising therapeutic agent for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Matthew A Ingersoll
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dannah R Miller
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - October Martinez
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - C Brent Wakefield
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Section of Urology, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kuan-Chan Hsieh
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - M Vijaya Simha
- Department of Medical and Applied Chemistry, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Chai-Lin Kao
- Department of Medical and Applied Chemistry, Kaohsiung Medical University Kaohsiung, Taiwan; Department of Chemistry, National Sun Yat-sen University, Taiwan
| | - Hui-Ting Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Taiwan; Orthopaedic Research Center, Kaohsiung Medical University, Taiwan.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Section of Urology, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
17
|
Butler LM, Centenera MM, Swinnen JV. Androgen control of lipid metabolism in prostate cancer: novel insights and future applications. Endocr Relat Cancer 2016; 23:R219-27. [PMID: 27130044 DOI: 10.1530/erc-15-0556] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022]
Abstract
One of the most typical hallmarks of prostate cancer cells is their exquisite dependence on androgens, which is the basis of the widely applied androgen deprivation therapy. Among the variety of key cellular processes and functions that are regulated by androgens, lipid metabolism stands out by its complex regulation and its many intricate links with cancer cell biology. Here, we review our current knowledge on the links between androgens and lipid metabolism in prostate cancer, and highlight recent developments and insights into the links between key oncogenic stimuli and altered lipid synthesis and/or uptake that may hold significant potential for biomarker development and provide new vulnerabilities for therapeutic intervention.
Collapse
Affiliation(s)
- Lisa M Butler
- School of MedicineUniversity of Adelaide, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Margaret M Centenera
- School of MedicineUniversity of Adelaide, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and CancerDepartment of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Ingersoll MA, Lyons AS, Muniyan S, D’Cunha N, Robinson T, Hoelting K, Dwyer JG, Bu XR, Batra SK, Lin MF. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells. PLoS One 2015; 10:e0131811. [PMID: 26121643 PMCID: PMC4487901 DOI: 10.1371/journal.pone.0131811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/07/2015] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents.
Collapse
Affiliation(s)
- Matthew A. Ingersoll
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Anastesia S. Lyons
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Napoleon D’Cunha
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Tashika Robinson
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Kyle Hoelting
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jennifer G. Dwyer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Section of Urology, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Xiu R. Bu
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, United States of America
- Laboratory for Electro-Optical Materials & NASA Center for High Performance Polymers and Composites, Clark Atlanta University, Atlanta, Georgia, United States of America
- * E-mail: (MFL); (XRB)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Section of Urology, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, 807, ROC
- * E-mail: (MFL); (XRB)
| |
Collapse
|
19
|
Lin Z, Peng R, Li Z, Wang Y, Lu C, Shen Y, Wang J, Shi G. 17-ABAG, a novel geldanamycin derivative, inhibits LNCaP-cell proliferation through heat shock protein 90 inhibition. Int J Mol Med 2015; 36:424-32. [PMID: 26059743 PMCID: PMC4501661 DOI: 10.3892/ijmm.2015.2239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is one of the most common cancer types worldwide. In 2014, there were an estimated 233,000 new cases and 29,480 mortalities in the United States. Androgen deprivation therapy, also called androgen suppression therapy, targets androgen signaling and remains the standard treatment for patients with advanced prostate cancer; however, responses to treatment are not durable and most patients advance to castrate-resistant prostate cancer. Therefore, novel therapeutic strategies to treat prostate cancer are urgently required. Heat shock protein 90 (Hsp90) is a chaperone protein that has been shown to regulate the progression of tumor cells. Numerous Hsp90 inhibitors show anti-tumor activity and several of them have entered clinical trials. Geldanamycin (GA) was identified as the first Hsp90 inhibitor, but shows hepatotoxicity at its effective concentrations, limiting its clinical use. In previous studies by our group, the GA derivative 17-ABAG was designed and synthesized. The present study showed that 17-ABAG inhibits the proliferation and induces apoptosis of LNCaP, an androgen-dependent prostate cancer cell line, in vitro through a classic apoptotic pathway. 17-ABAG also downregulated the Hsp90 client protein and inhibited androgen receptor nuclear localization in LNCaP cells. In addition, 17-ABAG suppressed the growth of LNCaP xenograft tumors without any obvious side-effects. The present study demonstrated that 17-ABAG is a promising anti-tumor agent and warrants further validation in prospective studies.
Collapse
Affiliation(s)
- Zhiyuan Lin
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Ruixian Peng
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Zhenyu Li
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yang Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jifeng Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Guowei Shi
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
20
|
Muniyan S, Chou YW, Ingersoll MA, Devine A, Morris M, Odero-Marah VA, Khan SA, Chaney WG, Bu XR, Lin MF. Antiproliferative activity of novel imidazopyridine derivatives on castration-resistant human prostate cancer cells. Cancer Lett 2014; 353:59-67. [PMID: 25050738 PMCID: PMC4150829 DOI: 10.1016/j.canlet.2014.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/28/2014] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
Metastatic prostate cancer (mPCa) relapses after a short period of androgen deprivation therapy and becomes the castration-resistant prostate cancer (CR PCa); to which the treatment is limited. Hence, it is imperative to identify novel therapeutic agents towards this patient population. In the present study, antiproliferative activities of novel imidazopyridines were compared. Among three derivatives, PHE, AMD and AMN, examined, AMD showed the highest inhibitory activity on LNCaP C-81 cell proliferation, following dose- and time-dependent manner. Additionally, AMD exhibited significant antiproliferative effect against a panel of PCa cells, but not normal prostate epithelial cells. Further, when compared to AMD, its derivative DME showed higher inhibitory activities on PCa cell proliferation, clonogenic potential and in vitro tumorigenicity. The inhibitory activity was apparently in part due to the induction of apoptosis. Mechanistic studies indicate that AMD and DME treatments inhibited both AR and PI3K/Akt signaling. The results suggest that better understanding of inhibitory mechanisms of AMD and DME could help design novel therapeutic agents for improving the treatment of CR PCa.
Collapse
Affiliation(s)
- Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Wei Chou
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Matthew A Ingersoll
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexus Devine
- Department of Chemistry, Clark Atlanta University, Atlanta, GA, USA
| | - Marisha Morris
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Valerie A Odero-Marah
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA; Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | - Shafiq A Khan
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA; Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | - William G Chaney
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiu R Bu
- Department of Chemistry, Clark Atlanta University, Atlanta, GA, USA; Laboratory for Electro-Optical Materials & NASA Center for High Performance Polymers and Composites, Clark Atlanta University, Atlanta, GA, USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery/Urology, University of Nebraska Medical Center, Omaha, NE, USA; School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC.
| |
Collapse
|
21
|
Epithelial plasticity in prostate cancer: principles and clinical perspectives. Trends Mol Med 2014; 20:643-51. [PMID: 25262538 DOI: 10.1016/j.molmed.2014.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/23/2023]
Abstract
Over the past decade, the capacity of cancer cells to oscillate between epithelial and mesenchymal phenotypes, termed epithelial plasticity (EP), has been demonstrated to play a critical role in metastasis. This phenomenon may be particularly important for prostate cancer (PC) progression, since recent studies have revealed interplay between EP and signaling by the androgen receptor (AR) oncoprotein. Moreover, EP appears to play a role in dictating the response to therapies for metastatic PC. This review will evaluate preclinical and clinical evidence for the relevance of EP in PC progression and consider the potential of targeting and measuring EP as a means to treat and manage lethal forms of the disease.
Collapse
|
22
|
Voet A, Helsen C, Zhang KYJ, Claessens F. The Discovery of Novel Human Androgen Receptor Antagonist Chemotypes Using a Combined Pharmacophore Screening Procedure. ChemMedChem 2013; 8:644-51. [DOI: 10.1002/cmdc.201200549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/25/2013] [Indexed: 11/08/2022]
|
23
|
Kim K, Chadalapaka G, Pathi SS, Jin UH, Lee JS, Park YY, Cho SG, Chintharlapalli S, Safe S. Induction of the transcriptional repressor ZBTB4 in prostate cancer cells by drug-induced targeting of microRNA-17-92/106b-25 clusters. Mol Cancer Ther 2012; 11:1852-62. [PMID: 22752225 DOI: 10.1158/1535-7163.mct-12-0181] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Androgen-insensitive DU145 and PC3 human prostate cancer cells express high levels of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and treatment of cells with methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) inhibited cell growth and downregulated Sp1, Sp3, and Sp4 expression. CDODA-Me (15 mg/kg/d) was a potent inhibitor of tumor growth in a mouse xenograft model (PC3 cells) and also decreased expression of Sp transcription factors in tumors. CDODA-Me-mediated downregulation of Sp1, Sp3, and Sp4 was due to induction of the transcriptional repressor ZBTB4, which competitively binds and displaces Sp transcription factors from GC-rich sites in Sp1-, Sp3-, Sp4-, and Sp-regulated gene promoters. ZBTB4 levels are relatively low in DU145 and PC3 cells due to suppression by miR paralogs that are members of the miR-17-92 (miR-20a/17-5p) and miR-106b-25 (miR-106b/93) clusters. Examination of publically available prostate cancer patient array data showed an inverse relationship between ZBTB4 and miRs-20a/17-5p/106b/93 expression, and increased ZBTB4 in patients with prostate cancer was a prognostic factor for increased survival. CDODA-Me induces ZBTB4 in prostate cancer cells through disruption of miR-ZBTB4 interactions, and this results in downregulation of pro-oncogenic Sp transcription factors and Sp-regulated genes.
Collapse
Affiliation(s)
- Kyounghyun Kim
- Institute of Biosciences and Technology, Texas A&M Health Science Center, MD Anderson Cancer Center, The University of Texas, Houston, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Helsen C, Marchand A, Chaltin P, Munck S, Voet A, Verstuyf A, Claessens F. Identification and characterization of MEL-3, a novel AR antagonist that suppresses prostate cancer cell growth. Mol Cancer Ther 2012; 11:1257-68. [PMID: 22496481 DOI: 10.1158/1535-7163.mct-11-0763] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiandrogens are an important component of prostate cancer therapy as the androgen receptor (AR) is the key regulator of prostate cancer growth and survival. Current AR antagonists, such as bicalutamide and hydroxyflutamide, have a low affinity for the AR and as a result block AR signaling insufficiently. Moreover, many patients develop a resistance for bicalutamide or hydroxyflutamide during therapy or show a clinical improvement after withdrawal of the antiandrogen. New and more effective AR antagonists are needed to ensure follow-up of these patients. We therefore developed a screening system to identify novel AR antagonists from a collection of compounds. MEL-3 [8-(propan-2-yl)-5,6-dihydro-4H-pyrazino[3,2,1-jk]carbazole] was selected as potent inhibitor of the AR and was further characterized in vitro. On different prostate cancer cell lines MEL-3 displayed an improved therapeutic profile compared with bicalutamide. Not only cell growth was inhibited but also the expression of androgen-regulated genes: PSA and FKBP5. Prostate cancer is often associated with mutated ARs that respond to a broadened spectrum of ligands including the current antiandrogens used in the clinic, hydroxyflutamide and bicalutamide. The activity of two mutant receptors (AR T877A and AR W741C) was shown to be reduced in presence of MEL-3, providing evidence that MEL-3 can potentially be a follow-up treatment for bicalutamide- and hydroxyflutamide-resistant patients. The mechanism of action of MEL-3 on the molecular level was further explored by comparing the structure-activity relationship of different chemical derivatives of MEL-3 with the in silico docking of MEL-3 derivatives in the binding pocket of the AR.
Collapse
Affiliation(s)
- Christine Helsen
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|