1
|
Magyar-Stang R, Pál H, Csányi B, Gaál A, Mihály Z, Czinege Z, Csipo T, Ungvari Z, Sótonyi P, Varga A, Horváth T, Bereczki D, Koller A, Debreczeni R. Assessment of cerebral autoregulatory function and inter-hemispheric blood flow in older adults with internal carotid artery stenosis using transcranial Doppler sonography-based measurement of transient hyperemic response after carotid artery compression. GeroScience 2023; 45:3333-3357. [PMID: 37599343 PMCID: PMC10643517 DOI: 10.1007/s11357-023-00896-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/16/2023] [Indexed: 08/22/2023] Open
Abstract
Unhealthy vascular aging promotes atherogenesis, which may lead to significant internal carotid artery stenosis (CAS) in 5 to 7.5% of older adults. The pathogenic factors that promote accelerated vascular aging and CAS also affect the downstream portion of the cerebral microcirculation in these patients. Primary treatments of significant CAS are eversion endarterectomy or endarterectomy with patch plasty. Factors that determine adequate hemodynamic compensation and thereby the clinical consequences of CAS as well as medical and surgical complications of carotid reconstruction surgery likely involve the anatomy of the circle of Willis (CoW), the magnitude of compensatory inter-hemispheric blood flow, and the effectiveness of cerebral microcirculatory blood flow autoregulation. This study aimed to test two hypotheses based on this theory. First, we hypothesized that patients with symptomatic and asymptomatic CAS would exhibit differences in autoregulatory function and inter-hemispheric blood flow. Second, we predicted that anatomically compromised CoW would associate with impaired inter-hemispheric blood flow compensation. We enrolled older adults with symptomatic or asymptomatic internal CAS (>70% NASCET criteria; n = 46) and assessed CoW integrity by CT angiography. We evaluated transient hyperemic responses in the middle cerebral arteries (MCA) after common carotid artery compression (CCC; 10 s) by transcranial Doppler sonography (TCD). We compared parameters reflecting autoregulatory function (e.g., transient hyperemic response ratio [THRR], return to baseline time [RTB], changes of vascular resistance) and inter-hemispheric blood flow (residual blood flow velocity). Our findings revealed that CAS was associated with impaired cerebral vascular reactivity. However, we did not observe significant differences in autoregulatory function or inter-hemispheric blood flow between patients with symptomatic and asymptomatic CAS. Moreover, anatomically compromised CoW did not significantly affect these parameters. Notably, we observed an inverse correlation between RTB and THRR, and 49% of CAS patients exhibited a delayed THRR, which associated with decreased inter-hemispheric blood flow. Future studies should investigate how TCD-based evaluation of autoregulatory function and inter-hemispheric blood flow can be used to optimize surgical techniques and patient selection for internal carotid artery revascularization.
Collapse
Affiliation(s)
- Rita Magyar-Stang
- Department of Neurology, Semmelweis University, Budapest, Hungary.
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary.
| | - Hanga Pál
- Department of Neurology, Semmelweis University, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Borbála Csányi
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Gaál
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Mihály
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Zsófia Czinege
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Andrea Varga
- Department of Diagnostic Radiology, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Horváth
- Research Center for Sport Physiology, Hungarian University of Sports Science, Budapest, Hungary
| | - Dániel Bereczki
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Akos Koller
- Research Center for Sport Physiology, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology & Physiology, Faculty of Health Sciences, and Translational Medicine Institute, Faculty of Medicine, and ELKH-SE, Cerebrovascular and Neurocognitive Disorders Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | |
Collapse
|