1
|
Liang X, Sun J, Yang H, Cheng J, Shi X, Yang M, Xu L, Wang Z, Zheng Y, Yue X. Effects of enzymatic hydrolysis on the allergenicity of natural cow milk based on a BALB/c mouse model. J Dairy Sci 2021; 104:12353-12364. [PMID: 34538492 DOI: 10.3168/jds.2021-20260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/23/2021] [Indexed: 11/19/2022]
Abstract
Cow milk allergy is one of the most prevalent food allergies worldwide, particularly in infants and children. To the best of our knowledge, minimal research exists concerning the antigenicity of cow milk (CM). This study was performed to evaluate the allergenicity of enzymatically hydrolyzed cow milk (HM) in a BALB/c mouse model. The mice were randomly divided into 5 groups (n = 12/group), which were sensitized with phosphate-buffered saline, CM, and HM (Alcalase-, or Protamex-, or Flavorzyme-treated cow milk; Novo Nordisk; AT, PT, FT, respectively), respectively, using cholera toxin as adjuvant on d 0, 7, 14, 21. On d 28, the test mice were orally challenged with phosphate-buffered saline, CM, and HM (AT, PT, or FT) alone. Anaphylactic symptoms were monitored in the mice. Antibody, cytokine, histamine, and mouse mast cell protease-1 (mMCP-1) levels were measured using enzyme-linked immunosorbent assays. In addition, the numbers of T helper (Th)1 and Th2 cells, as well as the proportions of CD4+CD25+Foxp3+ Treg cells, in mouse spleens were detected using flow cytometry. Statistical significance was determined by one-way ANOVA. The results revealed significant differences between CM- and HM-challenged mice. Among these, the clinical scores of HM-challenged mice (AT, 1.50; PT, 2.00; FT, 1.92) were lower than those of CM-challenged mice (positive control, 2.83), but body weight and temperature of HM-challenged mice were higher than those of CM-challenged mice. In addition, significant reductions of allergen-specific IgE, IgG, histamine, and mMCP-1 were showed in HM-challenged mice, especially for histamine, ranging from 171.42 ng/mL to 214.94 ng/mL. Remarkable reductions of IL-4, IL-5, and IL-13 levels, as well as elevations of interferon-γ and IL-10 levels in the spleens of HM-challenged mice were also detected. Moreover, the number of Th2 cells decreased in the HM-challenged mice, to 2.36% (AT), 1.79% (PT), and 4.03% (FT), respectively, whereas the numbers of Th1 cells (AT, 6.30%; PT, 6.70%; FT, 6.56%) and the proportions of CD4+CD25+Foxp3+Tregs (AT, 8.86%; PT, 9.21%; FT, 9.16%) increased significantly. Our findings indicate that exposure to HM was sufficient to induce a shift toward a Th1 response, thereby reducing potential allergenicity. Importantly, these results will lay a theoretical foundation for the development of hypoallergenic CM products.
Collapse
Affiliation(s)
- Xiaona Liang
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Jing Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Hui Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Jiao Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Xinyang Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Lingfen Xu
- China Medical University Shengjing Hospital Nanhu Branch, Shenyang 110001, P. R. China
| | - Zongzhou Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China.
| |
Collapse
|
2
|
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021; 11:biom11060851. [PMID: 34200323 PMCID: PMC8228670 DOI: 10.3390/biom11060851] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple biologically active components of human milk support infant growth, health and development. Milk provides a wide spectrum of mammary epithelial cell-derived extracellular vesicles (MEVs) for the infant. Although the whole spectrum of MEVs appears to be of functional importance for the growing infant, the majority of recent studies report on the MEV subfraction of milk exosomes (MEX) and their miRNA cargo, which are in the focus of this review. MEX and the dominant miRNA-148a play a key role in intestinal maturation, barrier function and suppression of nuclear factor-κB (NF-κB) signaling and may thus be helpful for the prevention and treatment of necrotizing enterocolitis. MEX and their miRNAs reach the systemic circulation and may impact epigenetic programming of various organs including the liver, thymus, brain, pancreatic islets, beige, brown and white adipose tissue as well as bones. Translational evidence indicates that MEX and their miRNAs control the expression of global cellular regulators such as DNA methyltransferase 1-which is important for the up-regulation of developmental genes including insulin, insulin-like growth factor-1, α-synuclein and forkhead box P3-and receptor-interacting protein 140, which is important for the regulation of multiple nuclear receptors. MEX-derived miRNA-148a and miRNA-30b may stimulate the expression of uncoupling protein 1, the key inducer of thermogenesis converting white into beige/brown adipose tissue. MEX have to be considered as signalosomes derived from the maternal lactation genome emitted to promote growth, maturation, immunological and metabolic programming of the offspring. Deeper insights into milk's molecular biology allow the conclusion that infants are both "breast-fed" and "breast-programmed". In this regard, MEX miRNA-deficient artificial formula is not an adequate substitute for breastfeeding, the birthright of all mammals.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Correspondence: ; Tel.: +49-5241-988060
| | - Wolfgang Stremmel
- Private Praxis for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
3
|
Zhang K, Mirza WA, Ni P, Yu M, Wang C, Wang B, Chang S, Yue L, Zhang R, Duan G. Recombination Lactococcus lactis expressing Helicobacter pylori neutrophil-activating protein A attenuates food allergy symptoms in mice. FEMS Microbiol Lett 2021; 368:6179882. [PMID: 33749737 DOI: 10.1093/femsle/fnab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Food allergy has been a significant public health issue with growing severity, prevalence and limited treatments. The neutrophil-activating protein A subunit (NapA) of Helicobacter pylori has been shown to have therapeutic potential in allergic diseases. METHODS The NapA expression efficiency of recombinant Lactococcus lactis(L.lactis) were determined. The effects of recombinant bacterium on food allergy in Balb/c mice were also investigated. RESULTS NapA were delivered and expressed efficiently via L. lactis. The engineered bacterium ameliorated food allergy symptoms (acute diarrhea and intestinal inflammation) and decreased serum histamine levels. In addition, the secretion of OVA-specific IgG2a, IFN-γ was promoted and the level of IL-4, OVA-specific IgE was restrained. CONCLUSIONS The recombinant strain may attenuate food allergy in mice through immune regulatory effect, which may be a promising approach for preventing or treating food allergy.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Wajid Ameen Mirza
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Mingyang Yu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Chen Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Bin Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Shuailei Chang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Limin Yue
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China.,Department of Epidemiology, College of Public Health, Hainan Medical University, Haikou 571199, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Dadao, Zhengzhou 450001, China
| |
Collapse
|
4
|
Chen X, Zhao X, Hu Y, Zhang B, Zhang Y, Wang S. Lactobacillus rhamnosus GG alleviates β-conglycinin-induced allergy by regulating the T cell receptor signaling pathway. Food Funct 2020; 11:10554-10567. [PMID: 33185639 DOI: 10.1039/d0fo02124e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, the need for safe and effective methods for relieving allergies is an important concern. In this study, we evaluated the role of Lactobacillus rhamnosus GG (LGG) in alleviating β-conglycinin (β-CG)-induced allergies and elucidated the related molecular mechanisms. Typical allergy symptoms and inflammatory factors in the serum showed that LGG intervention effectively alleviated β-CG induced allergy in mice, which was better than natural recovery (NR). Intestinal villi were restored and lower levels of CD4+ T cells infiltrated after LGG intervention. We evaluated whether LGG intervention weakened the proliferation ability of the spleen cells of allergic mice, balancing between T/B cells and Th1/Th2 and Th17/Treg cytokines. Transcriptome analysis revealed that 4106 differentially expressed mRNAs were identified by comparing the LGG group and β-CG group, and 546 differentially expressed mRNAs were identified by comparing the LGG group and NR group. KEGG pathway analysis identified that the T cell receptor (TCR) signaling pathway was significantly enriched upon LGG intervention, and the upregulated Ifnar2 and the downregulated Tgfbr2, Il13r2 and Il4ra were further validated by qPCR analysis. Therefore, the above results fully revealed the important role of LGG in alleviating β-CG-induced allergies.
Collapse
Affiliation(s)
- Xiaoxu Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | | | | | | | | | | |
Collapse
|
5
|
Yu B, Bi D, Yao L, Li T, Gu L, Xu H, Li X, Li H, Hu Z, Xu X. The inhibitory activity of alginate against allergic reactions in an ovalbumin-induced mouse model. Food Funct 2020; 11:2704-2713. [PMID: 32163080 DOI: 10.1039/d0fo00170h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Marine seaweed polysaccharides have been considered as a potential resource for antiallergic therapy. Alginate is an acidic linear polysaccharide and soluble dietary fiber that was extracted from brown algae, Laminaria japonica. The molecular weight of alginate was 108 kDa, and its water solution exhibited non-Newtonian characteristics, including viscoelasticity and shear-thinning behavior. The ability of alginate to inhibit allergic reactions was investigated in ovalbumin (OVA)-induced BALB/c mice, which have been widely used as a mouse model of egg allergy. The results showed that alginate could effectively attenuate the occurrence of allergic reactions, including improving the integrity of the intestinal epithelial villi and inhibition of mast cell degranulation in the jejunum, in OVA-induced mice. Moreover, after treatment with alginate, the levels of IgE, histamine and IL-4 in OVA-induced mice were remarkably decreased, and the levels of IFN-γ were markedly increased. In addition, the number of Treg cells in spleen tissues in OVA-induced mice was increased by alginate, and the OVA-induced differentiation of Th0 cells into Th2 cells was significantly inhibited. These results demonstrate that alginate possesses potential antiallergic activities in a mouse model of egg allergy, which might provide important evidence that alginate, extracted from Laminaria japonica, can be developed into a novel functional food for inhibiting egg allergy.
Collapse
Affiliation(s)
- Boming Yu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Tong Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Liang Gu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, P. R. China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
6
|
Wai CYY, Leung NYH, Leung PSC, Chu KH. Modulating Shrimp Tropomyosin-Mediated Allergy: Hypoallergen DNA Vaccines Induce Regulatory T Cells to Reduce Hypersensitivity in Mouse Model. Int J Mol Sci 2019; 20:ijms20184656. [PMID: 31546958 PMCID: PMC6769673 DOI: 10.3390/ijms20184656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Shellfish allergy is one of the most common food allergies, with tropomyosin as the major cross-reactive allergen. However, no allergen-specific immunotherapy is clinically available. Recently, we designed two shrimp hypoallergens MEM49 and MED171. This study aimed to examine and compare the efficacy of the MEM49- and MED171-based DNA vaccines (pMEM49 and pMED171) in modulating shrimp allergy in a murine model of shrimp tropomyosin sensitivity. Intradermal immunization of BALB/c mice with pMEM49 or pMED171 effectively down-modulated allergic symptoms, tropomyosin-specific IgE levels, intestinal Th2 cytokines expression, and inflammatory cell infiltration. Both pMEM49 and pMED171 increased the frequency of regulatory T cells, but to a greater extent by pMED171 with upregulation of gut-homing molecules integrin-α4β7. The functionality of the pMED171-induced Treg cells was further illustrated by anti-CD25-mediated depletion of Treg cells and the adoptive transfer of CD4+CD25+Foxp3+Treg cells. Collectively, the data demonstrate that intradermal administration of pMED171 leads to the priming, activation, and migration of dermal dendritic cells which subsequently induce Treg cells, both locally and systemically, to downregulate the allergic responses to tropomyosin. This study is the first to demonstrate the potency of hypoallergen-encoding DNA vaccines as a therapeutic strategy for human shellfish allergy via the vigorous induction of functional Treg cells.
Collapse
Affiliation(s)
- Christine Y Y Wai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Paediatrics, School of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Nicki Y H Leung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Paediatrics, School of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Patrick S C Leung
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
7
|
Zhang YF, Liu QM, Gao YY, Liu B, Liu H, Cao MJ, Yang XW, Liu GM. Attenuation of allergic responses following treatment with resveratrol in anaphylactic models and IgE-mediated mast cells. Food Funct 2019; 10:2030-2039. [PMID: 30907398 DOI: 10.1039/c9fo00077a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Resveratrol exists widely in plant species and has a variety of anti-oxidant, anti-inflammatory, and immunomodulatory properties. However, there have been few reports regarding its anti-food allergic activity. In this study, we demonstrated that resveratrol (isolated from Abies georgei) could decrease the release of β-hexosaminidase and histamine in rat basophilic leukemia-2H3 cells. Resveratrol was not only found to suppress the development of diarrhea, up-regulate the rectal temperature of ovalbumin-allergic mice, and decrease the serum level of specific immunoglobulin E, mouse mast cell protease-1 and histamine, but also found to decrease the population of dendritic cells, B cells and mast cells of ovalbumin -allergic mice in the spleen or mesenteric lymph node. Furthermore, resveratrol inhibited the release of β-hexosaminidase and histamine in bone marrow-derived cells and alleviated mast cell-mediated passive cutaneous anaphylaxis reactions. These findings indicated that resveratrol isolated from Abies georgei might have the potential to alleviate food hypersensitivity or allergic disease.
Collapse
Affiliation(s)
- Ya-Fen Zhang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Yuan-Yuan Gao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Bo Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Hong Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Daxue Road, Xiamen, 361005, Fujian, P.R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China.
| |
Collapse
|
8
|
Applying the adverse outcome pathway (AOP) for food sensitization to support in vitro testing strategies. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Gupta RK, Gupta K, Sharma A, Das M, Ansari IA, Dwivedi PD. Maillard reaction in food allergy: Pros and cons. Crit Rev Food Sci Nutr 2017; 58:208-226. [PMID: 26980434 DOI: 10.1080/10408398.2016.1152949] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food allergens have a notable potential to induce various health concerns in susceptible individuals. The majority of allergenic foods are usually subjected to thermal processing prior to their consumption. However, during thermal processing and long storage of foods, Maillard reaction (MR) often takes place. The MR is a non-enzymatic glycation reaction between the carbonyl group of reducing sugars and compounds having free amino groups. MR may sometimes be beneficial by damaging epitope of allergens and reducing allergenic potential, while exacerbation in allergic reactions may also occur due to changes in the motifs of epitopes or neoallergen generation. Apart from these modulations, non-enzymatic glycation can also modify the food protein(s) with various type of advance glycation end products (AGEs) such as Nϵ-(carboxymethyl-)lysine (CML), pentosidine, pyrraline, and methylglyoxal-H1 derived from MR. These Maillard products may act as immunogen by inducing the activation and proliferation of various immune cells. Literature is available to understand pathogenesis of glycation in the context of various diseases but there is hardly any review that can provide a thorough insight on the impact of glycation in food allergy. Therefore, present review explores the pathogenesis with special reference to food allergy caused by non-enzymatic glycation as well as AGEs.
Collapse
Affiliation(s)
- Rinkesh Kumar Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,b Department of Biosciences , Integral University , Lucknow , India
| | - Kriti Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | - Akanksha Sharma
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,c Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Capmus , Lucknow , India
| | - Mukul Das
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | | | | |
Collapse
|
10
|
Meng X, Li X, Gao J, Chen H. Characterization of the potential allergenicity of irradiated bovine α-lactalbumin in a BALB/c mouse model. Food Chem Toxicol 2016; 97:402-410. [PMID: 27746328 DOI: 10.1016/j.fct.2016.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 01/02/2023]
Abstract
Bovine α-lactalbumin (ALA) is a known food allergen present in milk to induce anaphylaxis. A previous study demonstrated that irradiated ALA (iALA) decreased the IgE-binding properties and weakened the degranulation capacity of basophils in vitro. The present study aimed to further assess the potential allergenicity of iALA in vivo in a BALB/c mouse model. The mice (n = 10/group) were intragastrically sensitized and orally challenged with either iALA or ALA using cholera toxin as adjuvant. In contrast to the ALA group, the iALA group did not show anaphylactic shock symptoms. A tendency toward decreased serum allergen-specific IgG/IgG1/IgE levels, plasma histamine levels and mast cell protease-1 (mMCP-1) concentrations in the iALA group were also observed, accompanied by a decrease in Th2-related cytokine levels and an increase of IFN-γ production in spleen cell cultures. Moreover, the peritoneal mast cell surface expression of FcεRI and peripheral blood basophil CD200R+ expression were decreased by 64.3% and 35.19%, respectively. Conversely, the percentage of CD4+CD25+Foxp3+ regulatory T cells increased in the iALA group. All of these findings indicated that iALA induces a shift toward the Th1 response, which ultimately reduces its potential allergenicity.
Collapse
Affiliation(s)
- Xuanyi Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science & Technology, Nanchang University, Nanchang 330031, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science & Technology, Nanchang University, Nanchang 330031, PR China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science & Technology, Nanchang University, Nanchang 330031, PR China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
11
|
Liu QM, Yang Y, Maleki SJ, Alcocer M, Xu SS, Shi CL, Cao MJ, Liu GM. Anti-Food Allergic Activity of Sulfated Polysaccharide from Gracilaria lemaneiformis is Dependent on Immunosuppression and Inhibition of p38 MAPK. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4536-4544. [PMID: 27186807 DOI: 10.1021/acs.jafc.6b01086] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polysaccharides from Gracilaria lemaneiformis in particular possess various bioactive functions, but their antiallergic activity remains incompletely defined. Sulfated polysaccharide from Gracilaria lemaneiformis (GLSP) was obtained by water extraction and ethanol precipitation followed by column chromatography. BALB/c mice, RBL-2H3, and KU812 cells were used for verifying the anti food allergic activity of GLSP. According to the results of mice experiment, GLSP was able to alleviate allergy symptoms, to reduce TM-specific IgE and IgG1, to suppress Th2 cell polarization, and to promote the function of regulatory T (Treg) cells. In addition, GLSP had the ability to inhibit the function of RBL-2H3 cells. Furthermore, GLSP inhibited the activation of KU812 via suppression of p38 mitogen-activated protein kinase (MAPK). In conclusion, immunosuppression as well as the reduction in the level of p38 MAPK may contribute to GLSP's putative activity against food allergy. GLSP may be used as a functional food component for allergic patients.
Collapse
Affiliation(s)
- Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Yang Yang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Soheila J Maleki
- U.S. Department of Agriculture, Agriculture Research Service , Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Marcos Alcocer
- School of Biosciences, Sutton Bonington Campus, University of Nottingham , Loughborough, LE125RD, United Kingdom
| | - Sha-Sha Xu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Chao-Lan Shi
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| |
Collapse
|
12
|
Bouchaud G, Castan L, Chesné J, Braza F, Aubert P, Neunlist M, Magnan A, Bodinier M. Maternal exposure to GOS/inulin mixture prevents food allergies and promotes tolerance in offspring in mice. Allergy 2016; 71:68-76. [PMID: 26424001 DOI: 10.1111/all.12777] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Food allergies affect 4-8% of children and are constantly on the rise, thus making allergies a timely issue. Most importantly, prevention strategies are nonexistent, and current therapeutic strategies have limited efficacy and need to be improved. One alternative to prevent or reduce allergies, particularly during infancy, could consist of modulating maternal immunity and microbiota using nondigestible food ingredients, such as prebiotics. For this purpose, we studied the preventive effects of prebiotics in Balb/c mothers during pregnancy and breastfeeding on food allergy development in offspring mice. METHODS After weaning, the offspring from mothers that were exposed to GOS/inulin mixture or fed a control diet were intraperitoneally sensitized to wheat proteins to induce a systemic allergic response and orally exposed to the same allergen. Immunological, physiological, and microbial parameters were analyzed. RESULTS GOS/inulin mixture diet modified the microbiota of mothers and their offspring. Offspring from mothers that received GOS/inulin prebiotics were protected against food allergies and displayed lower clinical scores, specifically of IgE and histamine levels, compared to offspring from mothers fed a control diet. Moreover, GOS/inulin supplementation for the mother resulted in stronger intestinal permeability in the offspring. Enhancement of the regulatory response to allergic inflammation and changes in the Th2/Th1 balance toward a dampened Th2 response were observed in mice from GOS/inulin mixture-exposed mothers. CONCLUSION The treatment of pregnant and lactating mice with nondigestible GOS/inulin prebiotics promotes a long-term protective effect against food allergies in the offspring.
Collapse
Affiliation(s)
| | - L. Castan
- UR1268 BIA; INRA; Nantes France
- UMR1087; l'institut du thorax; INSERM; Nantes France
- UMR6291; CNRS; Nantes France
- Université de Nantes; Nantes France
| | - J. Chesné
- UR1268 BIA; INRA; Nantes France
- UMR1087; l'institut du thorax; INSERM; Nantes France
- UMR6291; CNRS; Nantes France
- UMR913; Institut des Maladies de l'Appareil Digestif (IMAD); Faculté de Médecine; INSERM; Nantes France
| | - F. Braza
- UR1268 BIA; INRA; Nantes France
- UMR1087; l'institut du thorax; INSERM; Nantes France
- UMR6291; CNRS; Nantes France
- UMR913; Institut des Maladies de l'Appareil Digestif (IMAD); Faculté de Médecine; INSERM; Nantes France
| | - P. Aubert
- UMR6291; CNRS; Nantes France
- UMR913; Institut des Maladies de l'Appareil Digestif (IMAD); Faculté de Médecine; INSERM; Nantes France
- DHU2020 médecine personnalisée des maladies chroniques; Nantes France
| | - M. Neunlist
- UMR6291; CNRS; Nantes France
- UMR913; Institut des Maladies de l'Appareil Digestif (IMAD); Faculté de Médecine; INSERM; Nantes France
- DHU2020 médecine personnalisée des maladies chroniques; Nantes France
| | - A. Magnan
- UMR1087; l'institut du thorax; INSERM; Nantes France
- UMR6291; CNRS; Nantes France
- Université de Nantes; Nantes France
- l'institut du thorax; Service de Pneumologie; CHU de Nantes; Nantes France
- DHU2020 médecine personnalisée des maladies chroniques; Nantes France
| | | |
Collapse
|
13
|
Castillo-Courtade L, Han S, Lee S, Mian FM, Buck R, Forsythe P. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 2015; 70:1091-102. [PMID: 25966668 DOI: 10.1111/all.12650] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The prebiotic nature of human milk oligosaccharides (HMOs) and increasing evidence of direct immunomodulatory effects of these sugars suggest that they may have some therapeutic potential in allergy. Here, we assess the effect of two HMOs, 2'-fucosyllactose and 6'-sialyllactose, on symptomatology and immune responses in an ovalbumin-sensitized mouse model of food allergy. METHODS The effects of oral treatment with 2'-fucosyllactose and 6'-sialyllactose on anaphylactic symptoms induced by oral ovalbumin (OVA) challenge in sensitized mice were investigated. Mast cell functions in response to oral HMO treatment were also measured in the passive cutaneous anaphylaxis model, and direct effects on IgE-mediated degranulation of mast cells were assessed. RESULTS Daily oral treatment with 2'-fucosyllactose or 6'-sialyllactose attenuated food allergy symptoms including diarrhea and hypothermia. Treatment with HMOs also suppressed antigen-induced increases in mouse mast cell protease-1 in serum and mast cell numbers in the intestine. These effects were associated with increases in the CD4(+) CD25(+) IL-10(+) cell populations in the Peyer's patches and mesenteric lymph nodes, while 6'-sialyllactose also induced increased IL-10 and decreased TNF production in antigen-stimulated splenocytes. Both 2'-fucosyllactose and 6'-sialyllactose reduced the passive cutaneous anaphylaxis response, but only 6'-sialyllactose directly inhibited mast cell degranulation in vitro, at high concentrations. CONCLUSIONS Our results suggest that 2'-fucosyllactose and 6'-sialyllactose reduce the symptoms of food allergy through induction of IL-10(+) T regulatory cells and indirect stabilization of mast cells. Thus, human milk oligosaccharides may have therapeutic potential in allergic disease.
Collapse
Affiliation(s)
| | - S. Han
- Department of Medicine; McMaster University; Hamilton ON Canada
| | - S. Lee
- Department of Medicine; McMaster University; Hamilton ON Canada
| | - F. M. Mian
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - R. Buck
- Division of Abbott Laboratories; Abbott Nutrition; Columbus OH USA
| | - P. Forsythe
- Department of Medicine; McMaster University; Hamilton ON Canada
- Firestone Institute for Respiratory Research; McMaster University; Hamilton ON Canada
| |
Collapse
|
14
|
Abstract
Apart from its classical function in bone and calcium metabolism, vitamin D is also involved in immune regulation and has been linked to various cancers, immune disorders and allergic diseases. Within the innate and adaptive immune systems, the vitamin D receptor and enzymes in monocytes, dendritic cells, epithelial cells, T lymphocytes and B lymphocytes mediate the immune modulatory actions of vitamin D. Vitamin D insufficiency/deficiency early in life has been identified as one of the risk factors for food allergy. Several studies have observed an association between increasing latitude and food allergy prevalence, plausibly linked to lower ultraviolet radiation (UVR) exposure and vitamin D synthesis in the skin. Along with mounting epidemiological evidence of a link between vitamin D status and food allergy, mice and human studies have shed light on the modulatory properties of vitamin D on the innate and adaptive immune systems. This review will summarize the literature on the metabolism and immune modulatory properties of vitamin D, with particular reference to food allergy.
Collapse
|
15
|
Effect of high pressure-assisted crosslinking of ovalbumin and egg white by transglutaminase on their potential allergenicity. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Dioszeghy V, Mondoulet L, Dhelft V, Ligouis M, Puteaux E, Dupont C, Benhamou PH. The regulatory T cells induction by epicutaneous immunotherapy is sustained and mediates long-term protection from eosinophilic disorders in peanut-sensitized mice. Clin Exp Allergy 2015; 44:867-81. [PMID: 24666588 PMCID: PMC4233996 DOI: 10.1111/cea.12312] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 03/01/2014] [Accepted: 03/12/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy favours immune deviation from a Th2 to a Th1 response and increases the number of regulatory T cells (Tregs). Epicutaneous immunotherapy (EPIT) of sensitized mice decreases the clinical and the allergen-specific Th2 responses and increases local and peripheral Foxp3(+) Tregs. OBJECTIVE To investigate the role of Tregs in EPIT and characterize their phenotype and maintenance following EPIT. METHODS Tregs were investigated using in vivo depletion or adoptive transfer into BALB/c mice. Tregs were depleted using anti-CD25 antibody injection during EPIT, and allergen-specific responses were compared with Sham, EPIT alone and naïve mice. To demonstrate that Tregs can mediate protection by their own, and to study their maintenance following the end of EPIT, CD25(+) CD4(+) Tregs isolated from mice just after or 8 weeks after EPIT were transferred into peanut-sensitized mice. Foxp3-IRES-mRFP mice were transferred with EPIT-induced Tregs to analyse the induction of host Tregs. RESULTS The anti-CD25 antibody injection to EPIT mice abrogated the induction of Tregs in spleen and the expression of Foxp3 in oesophagus. This resulted in levels of peanut-induced eosinophilic infiltration in oesophagus similar to Sham and significantly higher than EPIT. Whereas the transfer of Tregs from Sham-treated mice demonstrated no effect, the transfer of Tregs isolated just after EPIT prevented peanut-induced eosinophil infiltration and eotaxin expression and induced Foxp3 in oesophagus. The transfer of Tregs isolated 8 weeks after EPIT suppressed allergen-specific responses as efficiently as did Tregs isolated just after EPIT and increased spleen Foxp3(+) CD25(+) CD4(+) cells similarly. The use of reporter mice demonstrated an increase in host Tregs. CONCLUSIONS These results confirm the Tregs-mediated mechanism of EPIT and demonstrate the persistence of efficient Tregs during a long period of time after treatment cessation. This suggests that EPIT induces long-term tolerance in peanut-sensitized mice.
Collapse
|
17
|
Abstract
The science of food allergy has been rapidly evolving before our eyes in the past half century. Like other allergic disorders, the prevalence of food allergies has dramatically increased, and coupled with the increased public awareness of anaphylaxis due to food allergy, this has driven an explosion in basic and clinical research in this extremely broad subject. Treatment of food allergies has evolved and practices such as food challenges have become an integral part of an allergy practice. The impact of the increase of food allergy has driven package labeling laws, legislation on emergency treatment availability in schools and other public places, and school policy. But to this day, our knowledge of the pathogenesis of food allergy is still incomplete. There are the most obvious IgE-mediated immediate hypersensitivity reactions, but then multiple previously unidentified conditions such as eosinophilic esophagitis, food protein-induced enterocolitis syndrome, milk protein allergy, food-induced atopic dermatitis, oral allergy syndrome, and others have complicated the diagnosis and management of many of our patients who are unable to tolerate certain foods. Many of these conditions are not IgE-mediated, but may be T cell-driven diseases. The role of T regulatory cells and immune tolerance and the newly discovered immunological role of vitamin D have shed light on the variable clinical presentation of food allergy and the development of new methods of immunotherapy in an example of bench-to-bedside research. Component-resolved diagnostic techniques have already begun to allow us to more precisely define the epitopes that are targeted in food allergic patients. The development of biological modulators, research on genomics and proteomics, and epigenetic techniques all offer promising avenues for new modes of therapy of food allergy in the twenty-first century.
Collapse
Affiliation(s)
- Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA,
| | | | | |
Collapse
|
18
|
Stojadinovic M, Pieters R, Smit J, Velickovic TC. Cross-Linking of β-Lactoglobulin Enhances Allergic Sensitization Through Changes in Cellular Uptake and Processing. Toxicol Sci 2014; 140:224-35. [DOI: 10.1093/toxsci/kfu062] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Escobar A, Aguirre A, Guzmán MA, González R, Catalán D, Acuña-Castillo C, Larrondo M, López M, Pesce B, Rolland J, O’Hehir R, Aguillón JC. Tolerogenic dendritic cells derived from donors with natural rubber latex allergy modulate allergen-specific T-cell responses and IgE production. PLoS One 2014; 9:e85930. [PMID: 24465795 PMCID: PMC3899084 DOI: 10.1371/journal.pone.0085930] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/03/2013] [Indexed: 11/25/2022] Open
Abstract
Natural rubber latex (NRL; Hevea brasiliensis) allergy is an IgE-mediated reaction to latex proteins. When latex glove exposure is the main sensitizing agent, Hev b 5 is one of the major allergens. Dendritic cells (DC), the main antigen presenting cells, modulated with pharmacological agents can restore tolerance in several experimental models, including allergy. In the current study, we aimed to generate DC with tolerogenic properties from NRL-allergic patients and evaluate their ability to modulate allergen-specific T and B cell responses. Here we show that dexamethasone-treated DC (dxDC) differentiated into a subset of DC, characterized by low expression of MHC class II, CD40, CD80, CD86 and CD83 molecules. Compared with LPS-matured DC, dxDC secreted lower IL-12 and higher IL-10 after CD40L activation, and induced lower alloantigenic T cell proliferation. We also show that dxDC pulsed with the dominant Hev b 5 T-cell epitope peptide, Hev b 546–65, inhibited both proliferation of Hev b 5-specific T-cell lines and the production of Hev b 5-specific IgE. Additionally, dxDC induced a subpopulation of IL-10-producing regulatory T cells that suppressed proliferation of Hev b 5-primed T cells. In conclusion, dxDC generated from NRL-allergic patients can modulate allergen-specific T-cell responses and IgE production, supporting their potential use in allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Alejandro Escobar
- Research Institute of Dental Science, Faculty of Dentistry, University of Chile, Santiago, Chile
- * E-mail: (AE); (JCA)
| | - Adam Aguirre
- Department of Pharmacy, Faculty of Chemistry, Catholic University of Chile, Santiago, Chile
| | - María Antonieta Guzmán
- Allergy Center, Clinical Hospital of University of Chile, University of Chile, Santiago, Chile
| | - Rodrigo González
- Blood bank Clinical Hospital of University of Chile, University of Chile, Santiago, Chile
| | - Diego Catalán
- Immunology Program, Faculty of Medicine, University of Chile Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudio Acuña-Castillo
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Milton Larrondo
- Blood bank Clinical Hospital of University of Chile, University of Chile, Santiago, Chile
| | - Mercedes López
- Immunology Program, Faculty of Medicine, University of Chile Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Barbara Pesce
- Immunology Program, Faculty of Medicine, University of Chile Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Jennifer Rolland
- Department of Immunology, AMREP, Monash University, Melbourne, Australia
| | - Robyn O’Hehir
- Department of Immunology, AMREP, Monash University, Melbourne, Australia
| | - Juan Carlos Aguillón
- Immunology Program, Faculty of Medicine, University of Chile Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- * E-mail: (AE); (JCA)
| |
Collapse
|
20
|
Kanjarawi R, Dy M, Bardel E, Sparwasser T, Dubois B, Mecheri S, Kaiserlian D. Regulatory CD4+Foxp3+ T cells control the severity of anaphylaxis. PLoS One 2013; 8:e69183. [PMID: 23922690 PMCID: PMC3724852 DOI: 10.1371/journal.pone.0069183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/05/2013] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Anaphylaxis is a life-threatening outcome of immediate-type hypersensitivity to allergen, consecutive to mast cell degranulation by allergen-specific IgE. Regulatory T cells (Treg) can control allergic sensitization and mast cell degranulation, yet their clinical benefit on anaphylactic symptoms is poorly documented. Here we investigated whether Treg action during the effector arm of the allergic response alleviates anaphylaxis. METHODS We used a validated model of IgE-mediated passive systemic anaphylaxis, induced by intravenous challenge with DNP-HSA in mice passively sensitized with DNP-specific IgE. Anaphylaxis was monitored by the drop in body temperature as well as plasma histamine and serum mMCP1 levels. The role of Treg was analyzed using MHC class II-deficient (Aβ(°/°)) mice, treatment with anti-CD25 or anti-CD4 mAbs and conditional ablation of Foxp3(+) Treg in DEREG mice. Therapeutic efficacy of Treg was also evaluated by transfer experiments using FoxP3-eGFP knock-in mice. RESULTS Anaphylaxis did not occur in mast cell-deficient W/W(v) mutant mice and was only moderate and transient in mice deficient for histamine receptor-1. Defects in constitutive Treg, either genetic or induced by antibody or toxin treatment resulted in a more severe and/or sustained hypothermia, associated with a rise in serum mMCP1, but not histamine. Adoptive transfer of Foxp3(+) Treg from either naïve or DNP-sensitized donors similarly alleviated body temperature loss in Treg-deficient DEREG mice. CONCLUSION Constitutive Foxp3(+) Treg can control the symptomatic phase of mast cell and IgE-dependent anaphylaxis in mice. This might open up new therapeutic avenues using constitutive rather than Ag-specific Treg for inducing tolerance in allergic patients.
Collapse
Affiliation(s)
- Reem Kanjarawi
- CIRI, International Center for Infectiology Research, “Mucosal immunity, Vaccination & Biotherapies” Team, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Michel Dy
- CNRS/UMR 8147, université René Descartes, Hôpital Necker, Paris, France
| | - Emilie Bardel
- CIRI, International Center for Infectiology Research, “Mucosal immunity, Vaccination & Biotherapies” Team, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Bertrand Dubois
- CIRI, International Center for Infectiology Research, “Mucosal immunity, Vaccination & Biotherapies” Team, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Salah Mecheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 2581, Paris, France
| | - Dominique Kaiserlian
- CIRI, International Center for Infectiology Research, “Mucosal immunity, Vaccination & Biotherapies” Team, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
- * E-mail:
| |
Collapse
|
21
|
Molecular mechanisms of IgE mediated food allergy. Int Immunopharmacol 2012; 13:432-9. [PMID: 22668720 DOI: 10.1016/j.intimp.2012.05.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/10/2012] [Accepted: 05/23/2012] [Indexed: 12/22/2022]
Abstract
The purpose of this review is to collate current knowledge and recent advances in molecular mechanism behind the immediate type hypersensitivity of foods. Food allergy is a growing concern of human health in developed as well as developing countries now days. Food allergic reactions are mostly IgE mediated and also known as immediate type hypersensitivity or type I reaction. This review encompasses a wide range of molecular events during IgE mediated reactions like primary exposure of allergens, processing of allergens by antigen presenting cells, role of transcription factors like GATA-3, STAT-6, NF-AT, c-maf, c-kit and NF-κB, Treg cells, toll like receptors, cytokines and chemokines, class switch to IgE, FcεR1 receptor, priming of IgE on mast cells or basophils, signaling events followed by secondary exposure of allergens, degranulation and release of mediators like leukotrienes, histamines, prostaglandins, β-hexosaminidase and ultimately anaphylaxis. This review may be helpful to beginners as well as experts working in the field of allergy and immunology because of the stepwise explanations of molecular mechanisms involved in IgE mediated reactions.
Collapse
|