1
|
van de Wiel SM, Porteiro B, Belt SC, Vogels EW, Bolt I, Vermeulen JL, de Waart DR, Verheij J, Muncan V, Oude Elferink RP, van de Graaf SF. Differential and organ-specific functions of organic solute transporter alpha and beta in experimental cholestasis. JHEP Rep 2022; 4:100463. [PMID: 35462858 PMCID: PMC9019253 DOI: 10.1016/j.jhepr.2022.100463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Background & Aims Organic solute transporter (OST) subunits OSTα and OSTβ facilitate bile acid efflux from the enterocyte into the portal circulation. Patients with deficiency of OSTα or OSTβ display considerable variation in the level of bile acid malabsorption, chronic diarrhea, and signs of cholestasis. Herein, we generated and characterized a mouse model of OSTβ deficiency. Methods Ostβ-/- mice were generated using CRISR/Cas9 and compared to wild-type and Ostα-/- mice. OSTβ was re-expressed in livers of Ostβ-/- mice using adeno-associated virus serotype 8 vectors. Cholestasis was induced in both models by bile duct ligation (BDL) or 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) feeding. Results Similar to Ostα-/- mice, Ostβ-/- mice exhibited elongated small intestines with blunted villi and increased crypt depth. Increased expression levels of ileal Fgf15, and decreased Asbt expression in Ostβ-/- mice indicate the accumulation of bile acids in the enterocyte. In contrast to Ostα-/- mice, induction of cholestasis in Ostβ-/- mice by BDL or DDC diet led to lower survival rates and severe body weight loss, but an improved liver phenotype. Restoration of hepatic Ostβ expression via adeno-associated virus-mediated overexpression did not rescue the phenotype of Ostβ-/- mice. Conclusions OSTβ is pivotal for bile acid transport in the ileum and its deficiency leads to an intestinal phenotype similar to Ostα-/- mice, but it exerts distinct effects on survival and the liver phenotype, independent of its expression in the liver. Our findings provide insights into the variable clinical presentation of patients with OSTα and OSTβ deficiencies. Lay summary Organic solute transporter (OST) subunits OSTα and OSTβ together facilitate the efflux of conjugated bile acids into the portal circulation. Ostα knockout mice have longer and thicker small intestines and are largely protected against experimental cholestatic liver injury. Herein, we generated and characterized Ostβ knockout mice for the first time. Ostα and Ostβ knockout mice shared a similar phenotype under normal conditions. However, in cholestasis, Ostβ knockout mice had a worsened overall phenotype which indicates a separate and specific role of OSTβ, possibly as an interacting partner of other intestinal proteins. This manuscript describes the first mouse model of OSTβ deficiency. Ostβ-/- mice are viable and fertile, but show increased length and weight of the small intestine, blunted villi and deeper crypts. Ostβ deficiency leads to an altered microbiome compared to both wild-type and Ostα-/- mice. Cholestasis led to lower survival and worse body weight loss, but an improved liver phenotype, in Ostβ-/- mice compared to Ostα-/- mice.
Collapse
Affiliation(s)
- Sandra M.W. van de Wiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Begoña Porteiro
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Saskia C. Belt
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Esther W.M. Vogels
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Isabelle Bolt
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jacqueline L.M. Vermeulen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - D. Rudi de Waart
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Joanne Verheij
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Vanesa Muncan
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, the Netherlands
- Corresponding author. Address: Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands; Tel.: 020-5668832, fax: 020-5669190
| |
Collapse
|
2
|
Functional characterization of Clonorchis sinensis sodium-bile acid co-transporter (CsSBAT) as a steroid sulfate transporter. Parasitol Res 2021; 121:217-224. [PMID: 34825261 DOI: 10.1007/s00436-021-07393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Clonorchis sinensis (Cs) is a common trematode in Asian countries. Infection by Cs can result in many clinical symptoms. Here, a cDNA encoding a Cs apical sodium-dependent bile acid transporter (CsSBAT) was isolated from a Cs cDNA library, and functional characterization was performed using Xenopus laevis oocyte expression system. When expressed in Xenopus laevis oocytes, CsSBAT mediated the transport of radiolabeled estrone sulfate and dehydroepiandrosterone sulfate. No trans-uptake of carnitine, estradiol 17 β-D glucuronide, prostaglandin E2, p-aminohippuric acid, α-ketoglutaric acid, and tetraethylammonium was observed. CsSBAT-mediated estrone sulfate uptake was in a time- and sodium-dependent manner. CsSBAT showed no exchange properties in efflux experiments. Concentration-dependent results showed saturable kinetics consistent with the Michaelis-Menten equation. Nonlinear regression analyses yielded a Km value of 0.3 ± 0.04 μM for [3H]estrone sulfate. CsSBAT-mediated estrone sulfate uptake was strongly inhibited by sulfate conjugates but not glucuronide conjugates. These findings contribute to our understanding of CsSBAT transport properties and the cascade of estrogen metabolite movement in Cs.
Collapse
|
3
|
Nguyen JT, Riessen R, Zhang T, Kieffer C, Anakk S. Deletion of Intestinal SHP Impairs Short-term Response to Cholic Acid Challenge in Male Mice. Endocrinology 2021; 162:6189092. [PMID: 33769482 PMCID: PMC8256632 DOI: 10.1210/endocr/bqab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Small heterodimer partner (SHP) is a crucial regulator of bile acid (BA) transport and synthesis; however, its intestine-specific role is not fully understood. Here, we report that male intestine-specific Shp knockout (IShpKO) mice exhibit higher intestinal BA but not hepatic or serum BA levels compared with the f/f Shp animals when challenged with an acute (5-day) 1% cholic acid (CA) diet. We also found that BA synthetic genes Cyp7a1 and Cyp8b1 are not repressed to the same extent in IShpKO compared with control mice post-CA challenge. Loss of intestinal SHP did not alter Fxrα messenger RNA (mRNA) but increased Asbt (BA ileal uptake transporter) and Ostα (BA ileal efflux transporter) expression even under chow-fed conditions. Surprisingly, the acute CA diet in IShpKO did not elicit the expected induction of Fgf15 but was able to maintain the suppression of Asbt, and Ostα/β mRNA levels. At the protein level, apical sodium-dependent bile acid transporter (ASBT) was downregulated, while organic solute transporter-α/β (OSTα/β) expression was induced and maintained regardless of diet. Examination of ileal histology in IShpKO mice challenged with acute CA diet revealed reduced villi length and goblet cell numbers. However, no difference in villi length, and the expression of BA regulator and transporter genes, was seen between f/f Shp and IShpKO animals after a chronic (14-day) CA diet, suggesting a potential adaptive response. We found the upregulation of the Pparα-Ugt axis after 14 days of CA diet may reduce the BA burden and compensate for the ileal SHP function. Thus, our study reveals that ileal SHP expression contributes to both overall intestinal structure and BA homeostasis.
Collapse
Affiliation(s)
- James T Nguyen
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan Riessen
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tongyu Zhang
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin Kieffer
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:Sayeepriyadarshini Anakk, Department of Molecular & Integrative Physiology and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 450 Medical Science Building, 506 South Matthews Avenue, Urbana, IL 61801, USA. E-mail:
| |
Collapse
|
4
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
5
|
Dai F, Yoo WG, Lu Y, Song JH, Lee JY, Byun Y, Pak JH, Sohn WM, Hong SJ. Sodium-bile acid co-transporter is crucial for survival of a carcinogenic liver fluke Clonorchis sinensis in the bile. PLoS Negl Trop Dis 2020; 14:e0008952. [PMID: 33284789 PMCID: PMC7746286 DOI: 10.1371/journal.pntd.0008952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/17/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
The liver fluke Clonorchis sinensis inhabits the bile ducts, where bile concentration disparities across the fluke cell membrane can cause bile intoxication. Sodium-bile acid co-transporter (SBAT) plays a crucial role in bile acid recycling. The process by which SBAT imports bile acids is electrically coupled to sodium ion co-transportation. Here, we report that the SBAT of C. sinensis (CsSBAT) is involved in bile acid transportation. CsSBAT cDNA encoded a putative polypeptide of 546 amino acid residues. Furthermore, CsSBAT consisted of ten putative transmembrane domains, and its 3D structure was predicted to form panel and core domains. The CsSBAT had one bile acid- and three Na+-binding sites, enabling coordination of a symport process. CsSBAT was mainly localized in the mesenchymal tissue throughout the fluke body and sparsely localized in the basement of the tegument, intestinal epithelium, and excretory bladder wall. Bile acid permeated into the adult flukes in a short time and remained at a low concentration level. Bile acid accumulated inside the mesenchymal tissue when CsSBAT was inhibited using polyacrylic acid–tetradeoxycholic acid conjugate. The accumulated bile acid deteriorated the C. sinensis adults leading to death. CsSBAT silencing shortened the lifespan of the fluke when it was placed into bile. Taken together, we propose that CsSBAT transports bile acids in the mesenchymal tissue and coordinate with outward transporters to maintain bile acid homeostasis of C. sinensis adults, contributing to C. sinensis survival in the bile environment. Clonorchiasis is a neglected tropical disease caused by infection with the liver fluke Clonorchis sinensis. C. sinensis is a biological carcinogen causing cholangiocarcinoma in humans. Juvenile worms inhabit and grow to adults in the bile ducts. Bile acids in the bile are double-edged molecules; they promote metabolism, but differences in their concentration across the cell membrane could lead to bile intoxication. The sodium-bile acid co-transporter of C. sinensis (CsSBAT) is indispensable for maintaining its normal physiology and bile detoxification in the bile duct. However, information related to the molecular and biological characteristics of the SBAT of liver flukes is not available. Here, we cloned CsSBAT for the first time in trematodes and characterized its tertiary structure and physiological functions. The sequential and structural properties of CsSBAT were similar to the apical sodium-bile acid co-transporter found in mammalian intestines. CsSBAT shared a mesenchymal tissue distribution with Na+-taurocholate co-transporting polypeptide in the hepatocytes adjacent to the bile ducts. Bile acids accumulated in C. sinensis adults when CsSBAT was inhibited, causing their death. This information might promote further studies on the physiological functions of SBAT and other trematode bile transporters and open new avenues toward developing novel anthelminthic drugs.
Collapse
Affiliation(s)
- Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Parasitology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yanyan Lu
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Liubei Center for Disease Control and Prevention, Liuzhou, Guangxi, PR China
| | - Jin-Ho Song
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Characterization of a novel organic solute transporter homologue from Clonorchis sinensis. PLoS Negl Trop Dis 2018; 12:e0006459. [PMID: 29702646 PMCID: PMC5942847 DOI: 10.1371/journal.pntd.0006459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/09/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022] Open
Abstract
Clonorchis sinensis is a liver fluke that can dwell in the bile ducts of mammals. Bile acid transporters function to maintain the homeostasis of bile acids in C. sinensis, as they induce physiological changes or have harmful effects on C. sinensis survival. The organic solute transporter (OST) transports mainly bile acid and belongs to the SLC51 subfamily of solute carrier transporters. OST plays a critical role in the recirculation of bile acids in higher animals. In this study, we cloned full-length cDNA of the 480-amino acid OST from C. sinensis (CsOST). Genomic analysis revealed 11 exons and nine introns. The CsOST protein had a 'Solute_trans_a' domain with 67% homology to Schistosoma japonicum OST. For further analysis, the CsOST protein sequence was split into the ordered domain (CsOST-N) at the N-terminus and disordered domain (CsOST-C) at the C-terminus. The tertiary structure of each domain was built using a threading-based method and determined by manual comparison. In a phylogenetic tree, the CsOST-N domain belonged to the OSTα and CsOST-C to the OSTβ clade. These two domains were more highly conserved with the OST α- and β-subunits at the structure level than at sequence level. These findings suggested that CsOST comprised the OST α- and β-subunits. CsOST was localized in the oral and ventral suckers and in the mesenchymal tissues abundant around the intestine, vitelline glands, uterus, and testes. This study provides fundamental data for the further understanding of homologues in other flukes.
Collapse
|
8
|
Ferrebee CB, Li J, Haywood J, Pachura K, Robinson BS, Hinrichs BH, Jones RM, Rao A, Dawson PA. Organic Solute Transporter α-β Protects Ileal Enterocytes From Bile Acid-Induced Injury. Cell Mol Gastroenterol Hepatol 2018; 5:499-522. [PMID: 29930976 PMCID: PMC6009794 DOI: 10.1016/j.jcmgh.2018.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Ileal bile acid absorption is mediated by uptake via the apical sodium-dependent bile acid transporter (ASBT), and export via the basolateral heteromeric organic solute transporter α-β (OSTα-OSTβ). In this study, we investigated the cytotoxic effects of enterocyte bile acid stasis in Ostα-/- mice, including the temporal relationship between intestinal injury and initiation of the enterohepatic circulation of bile acids. METHODS Ileal tissue morphometry, histology, markers of cell proliferation, gene, and protein expression were analyzed in male and female wild-type and Ostα-/- mice at postnatal days 5, 10, 15, 20, and 30. Ostα-/-Asbt-/- mice were generated and analyzed. Bile acid activation of intestinal Nrf2-activated pathways was investigated in Drosophila. RESULTS As early as day 5, Ostα-/- mice showed significantly increased ileal weight per length, decreased villus height, and increased epithelial cell proliferation. This correlated with premature expression of the Asbt and induction of bile acid-activated farnesoid X receptor target genes in neonatal Ostα-/- mice. Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase-1 and Nrf2-anti-oxidant responsive genes were increased significantly in neonatal Ostα-/- mice at these postnatal time points. Bile acids also activated Nrf2 in Drosophila enterocytes and enterocyte-specific knockdown of Nrf2 increased sensitivity of flies to bile acid-induced toxicity. Inactivation of the Asbt prevented the changes in ileal morphology and induction of anti-oxidant response genes in Ostα-/- mice. CONCLUSIONS Early in postnatal development, loss of Ostα leads to bile acid accumulation, oxidative stress, and a restitution response in ileum. In addition to its essential role in maintaining bile acid homeostasis, Ostα-Ostβ functions to protect the ileal epithelium against bile acid-induced injury. NCBI Gene Expression Omnibus: GSE99579.
Collapse
Key Words
- ARE, anti-oxidant response element
- Asbt, apical sodium-dependent bile acid transporter
- CDCA, chenodeoxycholic acid
- Drosophila
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GFP, green fluorescence protein
- GSH, reduced glutathione
- GSSG, oxidized glutathione
- Ibabp, ileal bile acid binding protein
- Ileum
- NEC, necrotizing enterocolitis
- Neonate
- Nox, reduced nicotinamide adenine dinucleotide phosphate oxidase
- Nrf2, nuclear factor (erythroid-derived 2)-like 2
- Nuclear Factor Erythroid-Derived 2-Like 2
- Ost, organic solute transporter
- PBS, phosphate-buffered saline
- ROS, reactive oxygen species
- Reactive Oxygen Species
- TNF, tumor necrosis factor
- TUNEL, terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling
- WT, wild type
- cRNA, complementary RNA
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Courtney B. Ferrebee
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, Georgia
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jianing Li
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, Georgia
| | - Jamie Haywood
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kimberly Pachura
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, Georgia
| | | | | | - Rheinallt M. Jones
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, Georgia
| | - Anuradha Rao
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, Georgia
| | - Paul A. Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, Georgia
- Children’s Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
9
|
Yuan ZQ, Li KW. Role of farnesoid X receptor in cholestasis. J Dig Dis 2016; 17:501-509. [PMID: 27383832 DOI: 10.1111/1751-2980.12378] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/23/2016] [Accepted: 07/03/2016] [Indexed: 12/11/2022]
Abstract
The nuclear receptor farnesoid X receptor (FXR) plays an important role in physiological bile acid synthesis, secretion and transport. Defects of FXR regulation in these processes can cause cholestasis and subsequent pathological changes. FXR regulates the synthesis and uptake of bile acid via enzymes. It also increases bile acid solubility and elimination by promoting conjugation reactions and exports pump expression in cholestasis. The changes in bile acid transporters are involved in cholestasis, which can result from the mutations of transporter genes or acquired dysfunction of transport systems, such as inflammation-induced intrahepatic cholestasis. The modulation function of FXR in extrahepatic cholestasis is not identical to that in intrahepatic cholestasis, but the discrepancy may be reduced over time. In extrahepatic cholestasis, increasing biliary pressure can induce bile duct proliferation and bile infarcts, but the absence of FXR may ameliorate them. This review provides an update on the function of FXR in the regulation of bile acid metabolism, its role in the pathophysiological process of cholestasis and the therapeutic use of FXR agonists.
Collapse
Affiliation(s)
- Zhi Qing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ke Wei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
10
|
Bile acid signaling through farnesoid X and TGR5 receptors in hepatobiliary and intestinal diseases. Hepatobiliary Pancreat Dis Int 2015; 14:18-33. [PMID: 25655287 DOI: 10.1016/s1499-3872(14)60307-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The well-known functions of bile acids (BAs) are the emulsification and absorption of lipophilic xenobiotics. However, the emerging evidences in the past decade showed that BAs act as signaling molecules that not only autoregulate their own metabolism and enterohepatic recirculation, but also as important regulators of integrative metabolism by activating nuclear and membrane-bound G protein-coupled receptors. The present review was to get insight into the role of maintenance of BA homeostasis and BA signaling pathways in development and management of hepatobiliary and intestinal diseases. DATA SOURCES Detailed and comprehensive search of PubMed and Scopus databases was carried out for original and review articles. RESULTS Disturbances in BA homeostasis contribute to the development of several hepatobiliary and intestinal disorders, such as non-alcoholic fatty liver disease, liver cirrhosis, cholesterol gallstone disease, intestinal diseases and both hepatocellular and colorectal carcinoma. CONCLUSION Further efforts made in order to advance the understanding of sophisticated BA signaling network may be promising in developing novel therapeutic strategies related not only to hepatobiliary and gastrointestinal but also systemic diseases.
Collapse
|
11
|
Baghdasaryan A, Chiba P, Trauner M. Clinical application of transcriptional activators of bile salt transporters. Mol Aspects Med 2014; 37:57-76. [PMID: 24333169 PMCID: PMC4045202 DOI: 10.1016/j.mam.2013.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/21/2013] [Accepted: 12/01/2013] [Indexed: 02/07/2023]
Abstract
Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular BS efflux through bile salt export pump (BSEP), basolateral elimination through organic solute transporters alpha and beta (OSTα/OSTβ) as well as inhibition of hepatocellular BS uptake through basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP) represent critical steps in protection from hepatocellular BS overload and can be targeted therapeutically. In this article, we review the potential clinical implications of the major BS transporters BSEP, OSTα/OSTβ and NTCP in the pathogenesis of hereditary and acquired cholestatic syndromes, provide an overview on transcriptional control of these transporters by the key regulatory nuclear receptors and discuss the potential therapeutic role of novel transcriptional activators of BS transporters in cholestasis.
Collapse
Affiliation(s)
- Anna Baghdasaryan
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria; Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria.
| |
Collapse
|
12
|
Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 2014; 55:1553-95. [PMID: 24838141 DOI: 10.1194/jlr.r049437] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Indexed: 12/12/2022] Open
Abstract
During the last 80 years there have been extraordinary advances in our knowledge of the chemistry and biology of bile acids. We present here a brief history of the major achievements as we perceive them. Bernal, a physicist, determined the X-ray structure of cholesterol crystals, and his data together with the vast chemical studies of Wieland and Windaus enabled the correct structure of the steroid nucleus to be deduced. Today, C24 and C27 bile acids together with C27 bile alcohols constitute most of the bile acid "family". Patterns of bile acid hydroxylation and conjugation are summarized. Bile acid measurement encompasses the techniques of GC, HPLC, and MS, as well as enzymatic, bioluminescent, and competitive binding methods. The enterohepatic circulation of bile acids results from vectorial transport of bile acids by the ileal enterocyte and hepatocyte; the key transporters have been cloned. Bile acids are amphipathic, self-associate in solution, and form mixed micelles with polar lipids, phosphatidylcholine in bile, and fatty acids in intestinal content during triglyceride digestion. The rise and decline of dissolution of cholesterol gallstones by the ingestion of 3,7-dihydroxy bile acids is chronicled. Scientists from throughout the world have contributed to these achievements.
Collapse
Affiliation(s)
- Alan F Hofmann
- Department of Medicine, University of California, San Diego, San Diego, CA
| | - Lee R Hagey
- Department of Medicine, University of California, San Diego, San Diego, CA
| |
Collapse
|
13
|
Ballatori N, Christian WV, Wheeler SG, Hammond CL. The heteromeric organic solute transporter, OSTα-OSTβ/SLC51: a transporter for steroid-derived molecules. Mol Aspects Med 2013; 34:683-92. [PMID: 23506901 PMCID: PMC3827772 DOI: 10.1016/j.mam.2012.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 08/20/2012] [Indexed: 12/12/2022]
Abstract
The organic solute transporter alpha-beta (OSTα-OSTβ) is one of the newest members of the solute carrier family, designated as SLC51, and arguably one of the most unique. The transporter is composed of two gene products encoded by SLC51A and SLC51B that heterodimerize to form the functional transporter complex. SLC51A encodes OSTα, a predicted 340-amino acid, 7-transmembrane (TM) domain protein, whereas SLC51B encodes OSTβ, a putative 128-amino acid, single-TM domain polypeptide. Heterodimerization of the two subunits increases the stability of the individual proteins, facilitates their post-translational modification, and is required for delivery of the functional transporter complex to the plasma membrane. There are no paralogues for SLC51A or SLC51B in any genome that has been examined. The transporter functions via a facilitated diffusion mechanism, and can mediate either efflux or uptake depending on the electrochemical gradient of its substrates. Overall, characterization of the transporter's substrate specificity, transport mechanism, tissue distribution, subcellular localization, and transcriptional regulation as well as the phenotype of the recently generated Slc51a-deficient mice have revealed that OSTα-OSTβ plays a central role in the transport of bile acids, conjugated steroids, and structurally-related molecules across the basolateral membrane of many epithelial cells. In particular, OSTα-OSTβ appears to be essential for intestinal bile acid absorption, and thus for dietary lipid absorption.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, United States
| | - Whitney V. Christian
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, United States
| | - Sadie G. Wheeler
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, United States
| | - Christine L. Hammond
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, United States
| |
Collapse
|
14
|
Lan T, Rao A, Haywood J, Kock ND, Dawson PA. Mouse organic solute transporter alpha deficiency alters FGF15 expression and bile acid metabolism. J Hepatol 2012; 57:359-65. [PMID: 22542490 PMCID: PMC3575595 DOI: 10.1016/j.jhep.2012.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/08/2012] [Accepted: 03/23/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Blocking intestinal bile acid (BA) absorption by inhibiting or inactivating the apical sodium-dependent BA transporter (Asbt) classically induces hepatic BA synthesis. In contrast, blocking intestinal BA absorption by inactivating the basolateral BA transporter, organic solute transporter alpha-beta (Ostα-Ostβ) is associated with an altered homeostatic response and decreased hepatic BA synthesis. The aim of this study was to determine the mechanisms underlying this phenotype, including the role of the farnesoid X receptor (FXR) and fibroblast growth factor 15 (FGF15). METHODS BA and cholesterol metabolism, intestinal phenotype, expression of genes important for BA metabolism, and intestinal FGF15 expression were examined in wild type, Ostα(-/-), Fxr(-/-), and Ostα(-/-)Fxr(-/-) mice. RESULTS Inactivation of Ostα was associated with decreases in hepatic cholesterol 7α-hydroxylase (Cyp7a1) expression, BA pool size, and intestinal cholesterol absorption. Ostα(-/-) mice exhibited significant small intestinal changes, including altered ileal villus morphology, and increases in intestinal length and mass. Total ileal FGF15 expression was elevated almost 20-fold in Ostα(-/-) mice as a result of increased villus epithelial cell number and ileocyte FGF15 protein expression. Ostα(-/-)Fxr(-/-) mice exhibited decreased ileal FGF15 expression, restoration of intestinal cholesterol absorption, and increases in hepatic Cyp7a1 expression, fecal BA excretion, and BA pool size. FXR deficiency did not reverse the intestinal morphological changes or compensatory decrease for ileal Asbt expression in Ostα(-/-) mice. CONCLUSIONS These results indicate that signaling via FXR is required for the paradoxical repression of hepatic BA synthesis but not the complex intestinal adaptive changes in Ostα(-/-) mice.
Collapse
Affiliation(s)
- Tian Lan
- Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Anuradha Rao
- Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Jamie Haywood
- Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Nancy D. Kock
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Paul A. Dawson
- Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA,Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA,Corresponding author. Address: Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA. Tel.: +1 (336) 716 4633; fax: +1 (336) 716 6276. (P.A. Dawson)
| |
Collapse
|