1
|
Next-generation sequencing analysis of each blastomere in good-quality embryos: insights into the origins and mechanisms of embryonic aneuploidy in cleavage-stage embryos. J Assist Reprod Genet 2020; 37:1711-1718. [PMID: 32445153 DOI: 10.1007/s10815-020-01803-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/28/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To explore the whole-chromosome status, origins, and mechanisms of chromosomal abnormalities in good-quality cleavage embryos using multiple annealing and looping-based amplification cycle (MALBAC) sequencing. METHODS The embryos studied came from7 patients (maternal aged 26-35) who had healthy birth from the same IVF cycles. These 21 frozen day 3 good-quality embryos were thawed and disaggregated into individual blastomere. Each blastomere was collected and analyzed by MALBAC sequencing. RESULTS Conclusive results were obtained from a high percentage of blastomeres (95.3%). A total of 46.6% of blastomeres were diploid, 53.4% were abnormal, and 28.0% had complex aneuploidy. Out of 21 embryos, 3 (14.3%) were normal and 18 (85.7%) were mosaics, showing the occurrence of mitotic errors; aneuploidy was confirmed in all cells of 4 of the 18 embryos, which showed the coexistence of meiotic errors. Conclusive results were obtained from all blastomeres of 15 embryos (71.4%, 15/21), which enabled us to reconstruct the cell lineage on the basis of the chromosomal content of the blastomeres in each division. There were 9 mitotic errors (8.7%, 9/103): nondisjunction accounted for 88.9% (8/9), and endoreplication accounted for 11.1% (1/9). CONCLUSIONS In good-quality embryos, there was a high rate and diverse array of chromosomal abnormalities. Morphological evaluation does not appear to assist in the reduction in meiotic errors from parental origins. Mitotic errors were common, and nondisjunction was found to be the main mechanism causing malsegregation during the cleavage divisions.
Collapse
|
2
|
Chromosome Missegregation in Single Human Oocytes Is Related to the Age and Gene Expression Profile. Int J Mol Sci 2020; 21:ijms21061934. [PMID: 32178390 PMCID: PMC7139522 DOI: 10.3390/ijms21061934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
The growing trend for women to postpone childbearing has resulted in a dramatic increase in the incidence of aneuploid pregnancies. Despite the importance to human reproductive health, the events precipitating female age-related meiotic errors are poorly understood. To gain new insight into the molecular basis of age-related chromosome missegregation in human oocytes, we combined the transcriptome profiles of twenty single oocytes (derived from females divided into two groups according to age <35 and ≥35 years) with their chromosome status obtained by array comparative genomic hybridization (aCGH). Furthermore, we compared the transcription profile of the single oocyte with the surrounding cumulus cells (CCs). RNA-seq data showed differences in gene expression between young and old oocytes. Dysregulated genes play a role in important biological processes such as gene transcription regulation, cytoskeleton organization, pathways related to RNA maturation and translation. The comparison of the transcription profile of the oocyte and the corresponding CCs highlighted the differential expression of genes belonging to the G protein-coupled receptor superfamily. Finally, we detected the loss of a X chromosome in two oocytes derived from women belonging to the ≥35 years age group. These aneuploidies may be caused by the detriment of REEP4, an endoplasmic reticulum protein, in women aged ≥35 years. Here we gained new insight into the complex regulatory circuit between the oocyte and the surrounding CCs and uncovered a new putative molecular basis of age-related chromosome missegregation in human oocytes.
Collapse
|
3
|
Zielinska AP, Holubcova Z, Blayney M, Elder K, Schuh M. Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect. eLife 2015; 4:e11389. [PMID: 26670547 PMCID: PMC4755749 DOI: 10.7554/elife.11389] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Aneuploidy in human eggs is the leading cause of pregnancy loss and Down’s syndrome. Aneuploid eggs result from chromosome segregation errors when an egg develops from a progenitor cell, called an oocyte. The mechanisms that lead to an increase in aneuploidy with advanced maternal age are largely unclear. Here, we show that many sister kinetochores in human oocytes are separated and do not behave as a single functional unit during the first meiotic division. Having separated sister kinetochores allowed bivalents to rotate by 90 degrees on the spindle and increased the risk of merotelic kinetochore-microtubule attachments. Advanced maternal age led to an increase in sister kinetochore separation, rotated bivalents and merotelic attachments. Chromosome arm cohesion was weakened, and the fraction of bivalents that precociously dissociated into univalents was increased. Together, our data reveal multiple age-related changes in chromosome architecture that could explain why oocyte aneuploidy increases with advanced maternal age. DOI:http://dx.doi.org/10.7554/eLife.11389.001 Older women are more likely to experience a miscarriage or give birth to a child who has a developmental disorder. This occurs because age increases the chances that a woman’s egg cells will have the wrong number of chromosomes. If a sperm fertilizes an egg with too many or too few copies of a chromosome, the resulting embryo will have the wrong number of copies for many genes. Many of these embryos fail to develop and die, but some are born with developmental conditions like Down's syndrome and Turner syndrome. New egg cells develop from immature egg cells that are present in a woman from birth. In an immature egg cell, chromosomes that came from the woman’s father are paired up with the matching chromosomes from the woman’s mother and the handle-like structures on each chromosome (called the kinetochores) are fused. Just before the immature egg cell divides, a molecular machine called ‘the spindle’ attaches to the chromosome handles. The spindle then separates these pairs of chromosomes such that each new cell receives only one copy of each chromosome. However, while it is known that this process sometimes goes wrong, it is not clear why mistakes happen more often in older women. Now, Zielinska et al. used powerful microscopes to observe cell division in over 200 preserved or living immature egg cells donated by women between the ages of 23 and 46. First, the experiments examined over 1,000 chromosomes in preserved immature egg cells that were about to divide. This revealed that the chromosome handles that were supposed to be fused had often disconnected in women over 35 years old. Chromosome pairs without correctly fused handles were also prone to rotating during the division process, and sometimes the pairs simply fell apart too soon. Further experiments with living immature egg cells then revealed that the spindle struggled to grip and separate the chromosomes correctly, possibly because the chromosome handles were not properly fused. These events increased the likelihood of a new egg cell receiving too many or too few chromosomes. Finally, Zielinska et al. found that immature egg cells lack a robust control mechanism that can detect when these problems occur. Together these findings help to explain why miscarriages and chromosome abnormalities are more common in the children of older women. Research building on these findings may in the future help women in their late 30s and early 40s to increase their chances of having a family. DOI:http://dx.doi.org/10.7554/eLife.11389.002
Collapse
Affiliation(s)
- Agata P Zielinska
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Zuzana Holubcova
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Kay Elder
- Bourn Hall Clinic, Cambridge, United Kingdom
| | - Melina Schuh
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| |
Collapse
|
4
|
Abstract
Donated oocytes are a treatment modality for female infertility which is also associated with increased risks of preeclampsia. Subsequently it is important to evaluate if there is concomitant increased risks for adverse neonatal events in donated oocyte neonates. A structured search of the literature using PubMed, EMBASE and Cochrane Reviews was performed to investigate the perinatal health outcomes of offspring conceived from donor oocytes compared with autologous oocytes. Meta-analysis was performed on comparable outcomes data. Twenty-eight studies were eligible and included in the review, and of these, 23 were included in a meta-analysis. Donor oocyte neonates are at increased risk of being born with low birth weight (<2500 g) [risk ratio (RR): 1.18, 95% confidence interval (CI): 1.14–1.22, P-value (P)<0.00001], very low birth weight (<1500 g) (RR: 1.24, CI: 1.15–1.35, P<0.00001), preterm (<37 weeks) (RR: 1.26, CI: 1.23–1.30, P<0.00001), of lower gestational age (mean difference −0.3 weeks, CI: −0.35 weeks to −0.25 weeks, P<0.00001), and preterm with low birth weight (RR: 1.24, CI: 1.19–1.29, P<0.00001), when compared with autologous oocyte neonates. Conversely, low birth weight outcomes were improved in term donor oocyte neonates (RR: 0.86, CI: 0.8–0.93, P=0.0003). These negative outcomes remained significant when controlling for multiple deliveries. The donor oocyte risk rates are higher than those found in general ART outcomes, are important considerations for the counselling of infertile patients and may also influence the long term health of the offspring.
Collapse
|
5
|
Abstract
Dividing cells that experience chromosome mis-segregation generate aneuploid daughter cells, which contain an incorrect number of chromosomes. Although aneuploidy interferes with the proliferation of untransformed cells, it is also, paradoxically, a hallmark of cancer, a disease defined by increased proliferative potential. These contradictory effects are also observed in mouse models of chromosome instability (CIN). CIN can inhibit and promote tumorigenesis. Recent work has provided insights into the cellular consequences of CIN and aneuploidy. Chromosome mis-segregation per se can alter the genome in many more ways than just causing the gain or loss of chromosomes. The short- and long-term effects of aneuploidy are caused by gene-specific effects and a stereotypic aneuploidy stress response. Importantly, these recent findings provide insights into the role of aneuploidy in tumorigenesis.
Collapse
|
6
|
Holubcová Z, Blayney M, Elder K, Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 2015; 348:1143-7. [PMID: 26045437 DOI: 10.1126/science.aaa9529] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aneuploidy in human eggs is the leading cause of pregnancy loss and several genetic disorders such as Down syndrome. Most aneuploidy results from chromosome segregation errors during the meiotic divisions of an oocyte, the egg's progenitor cell. The basis for particularly error-prone chromosome segregation in human oocytes is not known. We analyzed meiosis in more than 100 live human oocytes and identified an error-prone chromosome-mediated spindle assembly mechanism as a major contributor to chromosome segregation defects. Human oocytes assembled a meiotic spindle independently of either centrosomes or other microtubule organizing centers. Instead, spindle assembly was mediated by chromosomes and the small guanosine triphosphatase Ran in a process requiring ~16 hours. This unusually long spindle assembly period was marked by intrinsic spindle instability and abnormal kinetochore-microtubule attachments, which favor chromosome segregation errors and provide a possible explanation for high rates of aneuploidy in human eggs.
Collapse
Affiliation(s)
- Zuzana Holubcová
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Melina Schuh
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
7
|
Chow JFC, Yeung WSB, Lau EYL, Lee VCY, Ng EHY, Ho PC. Array comparative genomic hybridization analyses of all blastomeres of a cohort of embryos from young IVF patients revealed significant contribution of mitotic errors to embryo mosaicism at the cleavage stage. Reprod Biol Endocrinol 2014; 12:105. [PMID: 25420429 PMCID: PMC4256731 DOI: 10.1186/1477-7827-12-105] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/01/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Embryos produced by in vitro fertilization (IVF) have a high level of aneuploidy, which is believed to be a major factor affecting the success of human assisted reproduction treatment. The aneuploidy rate of cleavage stage embryos based on 1-2 biopsied blastomeres has been well-reported, however, the true aneuploidy rate of whole embryos remain unclear because of embryo mosaicism. To study the prevalence of mosaicism in top quality IVF embryos, surplus embryos donated from young patients (aged 28-32) in the assisted reproduction program at Queen Mary Hospital, Hong Kong were used. METHODS Thirty-six good quality day 2 embryos were thawed. Out of the 135 blastomeres in these embryos, 121 (89.6%) survived thawing. Twelve of these embryos without lysed blastomeres and which cleaved to at least seven cells after a 24-h culture were dissembled into individual blastomeres, which were analysed by array comparative genomic hybridization and microsatellite marker analysis by fluorescent PCR. RESULTS Out of 12 day-3 embryos, 2 (16.7%) were normal, 3 (25%) were diploid/aneuploidy with <38% abnormality, 4 (33.3%) were diploid/aneuploidy mosaic with > =38% abnormality, and three (25%) were mosaic aneuploids. Conclusive chromosomal data were obtained from a high percentage of blastomeres (92.8%, 90/97). Microsatellite marker analysis performed on blastomeres in aneuploid embryos enabled us to reconstruct the chromosomal status of the blastomeres in each cleavage division. The results showed the occurrence of meiotic errors in 3 (25%) of the studied embryos. There were 16 mitotic errors (18.8%, 16/85) in the 85 mitotic divisions undertaken by the studied embryos. The observed mitotic errors were mainly contributed by endoreduplication (31.3%, 5/16), non-disjunction (25%, 4/16) and anaphase lagging (25%, 4/16). Chromosome breakages occurred in 6 divisions (7.1%, 6/85). CONCLUSIONS Mosaicism occurs in a high percentage of good-quality cleavage stage embryos and mitotic errors contribute significantly to the abnormality.
Collapse
Affiliation(s)
- Judy FC Chow
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - William SB Yeung
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Estella YL Lau
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Vivian CY Lee
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Ernest HY Ng
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Pak-Chung Ho
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
8
|
Hultén MA, Öijerstedt L, Iwarsson E, Jonasson J. Maternal Germinal Trisomy 21 in Down Syndrome. J Clin Med 2014; 3:167-75. [PMID: 26237255 PMCID: PMC4449669 DOI: 10.3390/jcm3010167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/17/2023] Open
Abstract
It has now been over 50 years since it was discovered that Down syndrome is caused by an extra chromosome 21, i.e., trisomy 21. In the interim, it has become clear that in the majority of cases, the extra chromosome is inherited from the mother, and there is, in this respect, a strong maternal age effect. Numerous investigations have been devoted to clarifying the underlying mechanism, most recently suggesting that this situation is exceedingly complex, involving both biological and environmental factors. On the other hand, it has also been proposed that germinal trisomy 21 mosaicism, arising during the very early stages of maternal oogenesis with accumulation of trisomy 21 germ cells during subsequent development, may be the main predisposing factor. We present data here on the incidence of trisomy 21 mosaicism in a cohort of normal fetal ovarian samples, indicating that an accumulation of trisomy 21 germ cells does indeed take place during fetal oogenesis, i.e., from the first to the second trimester of pregnancy. We presume that this accumulation of trisomy 21 (T21) cells is caused by their delay in maturation and lagging behind the normal cells. We further presume that this trend continues during the third trimester of pregnancy and postnatally, up until ovulation, thereby explaining the maternal age effect in Down syndrome.
Collapse
Affiliation(s)
- Maj A Hultén
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm S-171 76, Sweden.
| | - Linn Öijerstedt
- Department of Neurobiology, Care Sciences and Society, KI Alzheimer Disease Research Center, Karolinska University Hospital, Huddinge, Stockholm S-141 86, Sweden.
| | - Erik Iwarsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm S-171 76, Sweden.
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm S-171 76, Sweden.
| | - Jon Jonasson
- Department of Clinical and Experimental Medicine, Linköping University, LMC, University Hospital, Linköping S-581 85, Sweden.
| |
Collapse
|
9
|
Beck-Fruchter R, Lavee M, Weiss A, Geslevich Y, Shalev E. Rescue intracytoplasmic sperm injection: a systematic review. Fertil Steril 2014; 101:690-8. [PMID: 24444597 DOI: 10.1016/j.fertnstert.2013.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To assess the feasibility, efficacy, and safety of rescue intracytoplasmic sperm injection (ICSI) in cases of fertilization failure, using a scientific literature search. DESIGN Systematic review. SETTING Centers for reproductive care. PATIENT(S) Infertility patients with total or partial fertilization failure during an IVF cycle. INTERVENTION(S) An electronic literature search was performed in PubMed from 1992 through May 2013. The search was then expanded by using listed references from selected articles. MAIN OUTCOME MEASURE(S) Pregnancy rate. The secondary outcome measures were fertilization rate, normal fertilization rate, cleavage rate, birth rate, and malformation rate. RESULT(S) Thirty-eight studies including 1,863 patients were included. The pooled pregnancy rate was 14.4%; 194 babies were delivered. CONCLUSION(S) Rescue ICSI can result in the delivery of a healthy newborn, although the pregnancy rates are low. The clinical evidence did not indicate an elevated rate of malformations, although the data are limited and incomplete.
Collapse
Affiliation(s)
- Ronit Beck-Fruchter
- Fertility and In-Vitro Fertilization Unit, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel.
| | - Michal Lavee
- Fertility and In-Vitro Fertilization Unit, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel; Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amir Weiss
- Fertility and In-Vitro Fertilization Unit, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel
| | - Yoel Geslevich
- Fertility and In-Vitro Fertilization Unit, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel
| | - Eliezer Shalev
- Fertility and In-Vitro Fertilization Unit, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel; Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Non-meiotic chromosome instability in human immature oocytes. Eur J Hum Genet 2013; 22:202-7. [PMID: 23695274 DOI: 10.1038/ejhg.2013.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/23/2013] [Accepted: 04/19/2013] [Indexed: 12/20/2022] Open
Abstract
Aneuploidy has been a major issue in human gametes and is closely related to fertility problems, as it is known to be present in cleavage stage embryos and gestational losses. Pre-meiotic chromosome abnormalities in women have been previously described. The aim of this study is to assess the whole-chromosome complement in immature oocytes to find those abnormalities caused by mitotic instability. For this purpose, a total of 157 oocytes at the germinal vesicle or metaphase I stage, and discarded from IVF cycles, were analysed by CGH. Fifty-six women, between 18 and 45 years old (mean 32.5 years), including 32 IVF patients (25-45 years of age) and 24 IVF oocyte donors (18-33 years of age), were included in the study. A total of 25/157 (15.9%) of the oocytes analysed, obtained from three IVF clinics, contained chromosome abnormalities, including both aneuploidy (24/157) and structural aberrations (9/157). Independently of the maternal age, the incidence of abnormal oocytes which originated before meiosis is 15.9%, and these imbalances were found in 33.9% of the females studied. This work sheds light on the relevance of mitotic instability responsible for the generation of the abnormalities present in human oocytes.
Collapse
|
11
|
Current World Literature. Curr Opin Obstet Gynecol 2012; 24:265-72. [DOI: 10.1097/gco.0b013e3283564f02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 2012; 13:493-504. [PMID: 22705668 PMCID: PMC3551553 DOI: 10.1038/nrg3245] [Citation(s) in RCA: 655] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trisomic and monosomic (aneuploid) embryos account for at least 10% of human pregnancies and, for women nearing the end of their reproductive lifespan, the incidence may exceed 50%. The errors that lead to aneuploidy almost always occur in the oocyte but, despite intensive investigation, the underlying molecular basis has remained elusive. Recent studies of humans and model organisms have shed new light on the complexity of meiotic defects, providing evidence that the age-related increase in errors in the human female is not attributable to a single factor but to an interplay between unique features of oogenesis and a host of endogenous and exogenous factors.
Collapse
Affiliation(s)
- So I Nagaoka
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|