1
|
Borges R, Fonseca J, Gomes C, Johnson WE, O'Brien SJ, Zhang G, Gilbert MTP, Jarvis ED, Antunes A. Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Phenotype. Genome Biol Evol 2020; 11:2244-2255. [PMID: 31386143 PMCID: PMC6735850 DOI: 10.1093/gbe/evz111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Typical avian eyes are phenotypically engineered for photopic vision (daylight). In contrast, the highly derived eyes of the barn owl (Tyto alba) are adapted for scotopic vision (dim light). The dramatic modifications distinguishing barn owl eyes from other birds include: 1) shifts in frontal orientation to improve binocularity, 2) rod-dominated retina, and 3) enlarged corneas and lenses. Some of these features parallel mammalian eye patterns, which are hypothesized to have initially evolved in nocturnal environments. Here, we used an integrative approach combining phylogenomics and functional phenotypes of 211 eye-development genes across 48 avian genomes representing most avian orders, including the stem lineage of the scotopic-adapted barn owl. Overall, we identified 25 eye-development genes that coevolved under intensified or relaxed selection in the retina, lens, cornea, and optic nerves of the barn owl. The agtpbp1 gene, which is associated with the survival of photoreceptor populations, was pseudogenized in the barn owl genome. Our results further revealed that barn owl retinal genes responsible for the maintenance, proliferation, and differentiation of photoreceptors experienced an evolutionary relaxation. Signatures of relaxed selection were also observed in the lens and cornea morphology-associated genes, suggesting that adaptive evolution in these structures was essentially structural. Four eye-development genes (ephb1, phactr4, prph2, and rs1) evolved in positive association with the orbit convergence in birds and under relaxed selection in the barn owl lineage, likely contributing to an increased reliance on binocular vision in the barn owl. Moreover, we found evidence of coevolutionary interactions among genes that are expressed in the retina, lens, and optic nerve, suggesting synergetic adaptive events. Our study disentangles the genomic changes governing the binocularity and low-light perception adaptations of barn owls to nocturnal environments while revealing the molecular mechanisms contributing to the shift from the typical avian photopic vision to the more-novel scotopic-adapted eye.
Collapse
Affiliation(s)
- Rui Borges
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - João Fonseca
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Cidália Gomes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia.,Walter Reed Biosystematics Unit, Smithsonian Institution, Suitland, Maryland
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia.,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark.,China National GeneBank, BGI-Shenzen, Shenzhen, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, Rockefeller University.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
2
|
Cox MA, Dougherty K, Westerberg JA, Schall MS, Maier A. Temporal dynamics of binocular integration in primary visual cortex. J Vis 2019; 19:13. [PMID: 31622471 PMCID: PMC6797477 DOI: 10.1167/19.12.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Whenever we open our eyes, our brain quickly integrates the two eyes' perspectives into a combined view. This process of binocular integration happens so rapidly that even incompatible stimuli are briefly fused before one eye's view is suppressed in favor of the other (binocular rivalry). The neuronal basis for this brief period of fusion during incompatible binocular stimulation is unclear. Neuroanatomically, the eyes provide two largely separate streams of information that are integrated into a binocular response by the primary visual cortex (V1). However, the temporal dynamics underlying the formation of this binocular response are largely unknown. To address this question, we examined the temporal profile of binocular responses in V1 of fixating monkeys. We found that V1 processes binocular stimuli in a dynamic sequence that comprises at least two distinct temporal phases. An initial transient phase is characterized by enhanced spiking responses for both compatible and incompatible binocular stimuli compared to monocular stimulation. This transient is followed by a sustained response that differed markedly between congruent and incongruent binocular stimulation. Specifically, incompatible binocular stimulation resulted in overall response reduction relative to monocular stimulation (binocular suppression). In contrast, responses to compatible stimuli were either suppressed or enhanced (binocular facilitation) depending on the neurons' ocularity (selectivity for one eye over the other) and laminar location. These results suggest that binocular integration in V1 occurs in at least two sequential steps that comprise initial additive combination of the two eyes' signals followed by widespread differentiation between binocular concordance and discordance.
Collapse
Affiliation(s)
- Michele A Cox
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Kacie Dougherty
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Jacob A Westerberg
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Michelle S Schall
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Alexander Maier
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Shuboni-Mulligan DD, Cavanaugh BL, Tonson A, Shapiro EM, Gall AJ. Functional and anatomical variations in retinorecipient brain areas in Arvicanthis niloticus and Rattus norvegicus: implications for the circadian and masking systems. Chronobiol Int 2019; 36:1464-1481. [PMID: 31441335 DOI: 10.1080/07420528.2019.1651325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Daily rhythms in light exposure influence the expression of behavior by entraining circadian rhythms and through its acute effects on behavior (i.e., masking). Importantly, these effects of light are dependent on the temporal niche of the organism; for diurnal organisms, light increases activity, whereas for nocturnal organisms, the opposite is true. Here we examined the functional and morphological differences between diurnal and nocturnal rodents in retinorecipient brain regions using Nile grass rats (Arvicanthis niloticus) and Sprague-Dawley (SD) rats (Rattus norvegicus), respectively. We established the presence of circadian rhythmicity in cFOS activation in retinorecipient brain regions in nocturnal and diurnal rodents housed in constant dark conditions to highlight different patterns between the temporal niches. We then assessed masking effects by comparing cFOS activation in constant darkness (DD) to that in a 12:12 light/dark (LD) cycle, confirming light responsiveness of these regions during times when masking occurs in nature. The intergeniculate leaflet (IGL) and olivary pretectal nucleus (OPN) exhibited significant variation among time points in DD of both species, but their expression profiles were not identical, as SD rats had very low expression levels for most timepoints. Light presentation in LD conditions induced clear rhythms in the IGL of SD rats but eliminated them in grass rats. Additionally, grass rats were the only species to demonstrate daily rhythms in LD for the habenula and showed a strong response to light in the superior colliculus. Structurally, we also analyzed the volumes of the visual brain regions using anatomical MRI, and we observed a significant increase in the relative size of several visual regions within diurnal grass rats, including the lateral geniculate nucleus, superior colliculus, and optic tract. Altogether, our results suggest that diurnal grass rats devote greater proportions of brain volume to visual regions than nocturnal rodents, and cFOS activation in these brain regions is dependent on temporal niche and lighting conditions.
Collapse
Affiliation(s)
- Dorela D Shuboni-Mulligan
- Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing , MI , USA.,Department of Radiology, Michigan State University , East Lansing , MI , USA
| | | | - Anne Tonson
- Department of Physiology, Michigan State University , East Lansing , MI , USA
| | - Erik M Shapiro
- Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing , MI , USA.,Department of Radiology, Michigan State University , East Lansing , MI , USA
| | - Andrew J Gall
- Department of Psychology, Hope College , Holland , MI , USA.,Neuroscience Program, Hope College , Holland , MI , USA
| |
Collapse
|
4
|
Borges R, Johnson WE, O'Brien SJ, Gomes C, Heesy CP, Antunes A. Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments. BMC Genomics 2018; 19:121. [PMID: 29402215 PMCID: PMC5800076 DOI: 10.1186/s12864-017-4417-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/22/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Based on evolutionary patterns of the vertebrate eye, Walls (1942) hypothesized that early placental mammals evolved primarily in nocturnal habitats. However, not only Eutheria, but all mammals show photic characteristics (i.e. dichromatic vision, rod-dominated retina) suggestive of a scotopic eye design. RESULTS Here, we used integrative comparative genomic and phylogenetic methodologies employing the photoreceptive opsin gene family in 154 mammals to test the likelihood of a nocturnal period in the emergence of all mammals. We showed that mammals possess genomic patterns concordant with a nocturnal ancestry. The loss of the RH2, VA, PARA, PARIE and OPN4x opsins in all mammals led us to advance a probable and most-parsimonious hypothesis of a global nocturnal bottleneck that explains the loss of these genes in the emerging lineage (> > 215.5 million years ago). In addition, ancestral character reconstruction analyses provided strong evidence that ancestral mammals possessed a nocturnal lifestyle, ultra-violet-sensitive vision, low visual acuity and low orbit convergence (i.e. panoramic vision). CONCLUSIONS Overall, this study provides insight into the evolutionary history of the mammalian eye while discussing important ecological aspects of the photic paleo-environments ancestral mammals have occupied.
Collapse
Affiliation(s)
- Rui Borges
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia, 199004
- Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 8000, North Ocean Drive, Ft Lauderdale, 33004, Florida, USA
| | - Cidália Gomes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- ICBAS, Institute of the Biomedical Sciences of Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Christopher P Heesy
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th avenue, Glendale, AZ, USA
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
5
|
Abstract
The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior.
Collapse
Affiliation(s)
- S Ferri
- Department of Neuroscience, University of Parma, 43125 Parma, Italy
| | - K Pauwels
- Computer Vision and Active Perception Laboratory, School of Computer Science and Communication, KTH, 10044 Stockholm, Sweden
| | - G Rizzolatti
- Department of Neuroscience, University of Parma, 43125 Parma, Italy
| | - G A Orban
- Department of Neuroscience, University of Parma, 43125 Parma, Italy
| |
Collapse
|
6
|
Pearce E, Bridge H. Is orbital volume associated with eyeball and visual cortex volume in humans? Ann Hum Biol 2013; 40:531-40. [PMID: 23879766 DOI: 10.3109/03014460.2013.815272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. AIM To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. SUBJECTS AND METHODS Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. RESULTS A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. CONCLUSION In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.
Collapse
Affiliation(s)
- Eiluned Pearce
- Department of Anthropology, University of Oxford , 64 Banbury Road, Oxford OX2 6PN , UK
| | | |
Collapse
|
7
|
Kamilar JM, Heesy CP, Bradley BJ. Did trichromatic color vision and red hair color coevolve in primates? Am J Primatol 2012. [PMID: 23192604 DOI: 10.1002/ajp.22099] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reddish pelage and red hair ornaments have evolved many times, independently, during primate evolution. It is generally assumed that these red-coat phenotypes, like red skin phenotypes, play a role in sociosexual signaling and, thus evolved in tandem with conspecific color vision. This study examines the phylogenetic distribution of color vision and pelage coloration across the primate order to ask: (1) did red pelage and trichromacy coevolve; or (2) did trichromacy evolve first, and then subsequently red pelage evolved as an exaptation? We collected quantitative, color-corrected photographic color data for 142 museum research skins from 92 species representing 41 genera spanning all major primate lineages. For each species, we quantified the ratio of Red/Green values (from a RGB color model) at 20 anatomical landmarks. For these same species, we compiled data on color vision type (routine trichromatic, polymorphic, routine dichromatic, monochromatic) and data on variables that potentially covary with visual system (VS) and coloration, including activity pattern and body mass dimorphism (proxy for sexual selection). We also considered whether the long-term storage of research skins might influence coloration. Therefore, we included the time since the specimen was collected as an additional predictor. Analyzing the data with phylogenetic generalized least squares models, we found that the amount of red hair present in primates is associated with differences in VSs, but not in the direction expected. Surprisingly, trichromatic primate species generally exhibited less red hair compared to red-green colorblind species. Thus, our results do not support the general assumption that color vision and red pelage coloration are a coevolutionary product of sociosexual signaling in primates. In addition, we did not find an effect of activity pattern, body mass dimorphism, or time since collection on the redness of primate hair. Our results have important implications for the evolution of primate coloration and visual systems.
Collapse
Affiliation(s)
- Jason M Kamilar
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308, USA.
| | | | | |
Collapse
|
8
|
Hall MI, Kamilar JM, Kirk EC. Eye shape and the nocturnal bottleneck of mammals. Proc Biol Sci 2012; 279:4962-8. [PMID: 23097513 DOI: 10.1098/rspb.2012.2258] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most vertebrate groups exhibit eye shapes that vary predictably with activity pattern. Nocturnal vertebrates typically have large corneas relative to eye size as an adaptation for increased visual sensitivity. Conversely, diurnal vertebrates generally demonstrate smaller corneas relative to eye size as an adaptation for increased visual acuity. By contrast, several studies have concluded that many mammals exhibit typical nocturnal eye shapes, regardless of activity pattern. However, a recent study has argued that new statistical methods allow eye shape to accurately predict activity patterns of mammals, including cathemeral species (animals that are equally likely to be awake and active at any time of day or night). Here, we conduct a detailed analysis of eye shape and activity pattern in mammals, using a broad comparative sample of 266 species. We find that the eye shapes of cathemeral mammals completely overlap with nocturnal and diurnal species. Additionally, most diurnal and cathemeral mammals have eye shapes that are most similar to those of nocturnal birds and lizards. The only mammalian clade that diverges from this pattern is anthropoids, which have convergently evolved eye shapes similar to those of diurnal birds and lizards. Our results provide additional evidence for a nocturnal 'bottleneck' in the early evolution of crown mammals.
Collapse
Affiliation(s)
- Margaret I Hall
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA.
| | | | | |
Collapse
|
9
|
Pointer MA, Kamilar JM, Warmuth V, Chester SGB, Delsuc F, Mundy NI, Asher RJ, Bradley BJ. RUNX2 tandem repeats and the evolution of facial length in placental mammals. BMC Evol Biol 2012; 12:103. [PMID: 22741925 PMCID: PMC3438065 DOI: 10.1186/1471-2148-12-103] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/28/2012] [Indexed: 01/21/2023] Open
Abstract
Background When simple sequence repeats are integrated into functional genes, they can potentially act as evolutionary ‘tuning knobs’, supplying abundant genetic variation with minimal risk of pleiotropic deleterious effects. The genetic basis of variation in facial shape and length represents a possible example of this phenomenon. Runt-related transcription factor 2 (RUNX2), which is involved in osteoblast differentiation, contains a functionally-important tandem repeat of glutamine and alanine amino acids. The ratio of glutamines to alanines (the QA ratio) in this protein seemingly influences the regulation of bone development. Notably, in domestic breeds of dog, and in carnivorans in general, the ratio of glutamines to alanines is strongly correlated with facial length. Results In this study we examine whether this correlation holds true across placental mammals, particularly those mammals for which facial length is highly variable and related to adaptive behavior and lifestyle (e.g., primates, afrotherians, xenarthrans). We obtained relative facial length measurements and RUNX2 sequences for 41 mammalian species representing 12 orders. Using both a phylogenetic generalized least squares model and a recently-developed Bayesian comparative method, we tested for a correlation between genetic and morphometric data while controlling for phylogeny, evolutionary rates, and divergence times. Non-carnivoran taxa generally had substantially lower glutamine-alanine ratios than carnivorans (primates and xenarthrans with means of 1.34 and 1.25, respectively, compared to a mean of 3.1 for carnivorans), and we found no correlation between RUNX2 sequence and face length across placental mammals. Conclusions Results of our diverse comparative phylogenetic analyses indicate that QA ratio does not consistently correlate with face length across the 41 mammalian taxa considered. Thus, although RUNX2 might function as a ‘tuning knob’ modifying face length in carnivorans, this relationship is not conserved across mammals in general.
Collapse
Affiliation(s)
- Marie A Pointer
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | | | | | | | | | | | | | | |
Collapse
|