1
|
Schwanengel LS, Weber S, Simon R, Lehmann T, Augsten R, Meller D, Hammer M. Changes in drusen-associated autofluorescence over time observed by fluorescence lifetime imaging ophthalmoscopy in age-related macular degeneration. Acta Ophthalmol 2023; 101:e154-e166. [PMID: 36017579 DOI: 10.1111/aos.15238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To observe fundus autofluorescence (FAF) lifetimes and peak emission wavelength (PEW) of drusen with respect to the pathology of the overlying RPE in the follow-up of AMD-patients. METHODS Forty eyes of 38 patients (age: 75.1 ± 7.1 years) with intermediate AMD were included. FAF lifetimes and PEW were recorded by fluorescence lifetime imaging ophthalmoscopy (FLIO). Twenty-six eyes had a follow-up investigation between months 12 and 36, and 10 at months 37-72. AMD progression was retrieved from color fundus photography (CFP) and OCT. Drusen were classified with respect to changes in the overlying RPE into groups no, questionable or faint, and apparent hyperpigmentation based on CFP. RESULTS Among the 210 hyperautofluorescent drusen found at baseline, those with hyperpigmentation had longer lifetimes and shorter PEW than those without. Drusen without hyperpigmentation had shorter lifetimes and PEW than neighboring RPE (all p < 0.001) at baseline, but drusen lifetimes increased, and PEW shortened further over follow-up. Eyes, showing AMD progression, had significantly longer FAF lifetimes at baseline than non-progressing eyes: 282 ± 102 ps versus 245 ± 98 ps, p < 0.001 and 365 ± 44 ps vs. 336 ± 48 ps, p = 0.025 for short and long wavelength FLIO channel, respectively. CONCLUSIONS Depending on hyperpigmentation properties, drusen show lifetimes and PEW different from that of adjacent RPE which change over the natural history of AMD. This difference and change, however, might reflect progressive dysmorphia of the RPE rather than representing fluorescence of drusen material itself. Nevertheless, the observed FAF changes could make FLIO a useful tool for the early detection of AMD progression risk.
Collapse
Affiliation(s)
| | - Sebastian Weber
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Rowena Simon
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Thomas Lehmann
- Institute for Medical Statistics, Informatics, und Data Sciences, University Hospital Jena, Jena, Germany
| | - Regine Augsten
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, University of Jena, Jena, Germany
| |
Collapse
|
2
|
Characteristics of intermediate age-related macular degeneration with hyperreflective foci. Sci Rep 2022; 12:18420. [PMID: 36319691 PMCID: PMC9626558 DOI: 10.1038/s41598-022-23380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Hyperreflective foci (HRF) are the findings observed in optical coherence tomography (OCT) in several retinal diseases and are believed to be associated with the increased risk of atrophy in eyes with age-related macular degeneration (AMD). In this study, we investigated the clinical and genetic characteristics of intermediate AMD with HRF. We reviewed the medical charts for 155 patients with intermediate AMD, in whom macular neovascularization (MNV) was observed in the contralateral eye. The presence or absence of an HRF was evaluated using a spectral-domain OCT volume scan spanning the macular region. Patients were followed longitudinally for at least 12 months, and the maximum follow-up period was 60 months. Genotyping of ARMS2 A69S and CFH I62V was performed in all participants. Of the 155 patients (mean age: 77.8 ± 7.6 years, male/female: 103/52), HRF was observed in 53 eyes (34.2%) and was significantly associated with type-3 MNV (p = 1.0 × 10-5) in the contralateral eye, pseudodrusen (p = 5.0 × 10-4), thinner subfoveal choroidal thickness (p = 0.013), and risk of ARMS2 A69S (p = 0.023). During follow-up (40.8 ± 17.5), 38 eyes (24.5%) developed advanced AMD. The mean time to the onset of advanced AMD was 29.8 ± 12.9 months in eyes with intermediate AMD. HRF was associated with MNV (p = 1.0 × 10-3), but not with atrophy.
Collapse
|
3
|
Significance of Hyperreflective Foci as an Optical Coherence Tomography Biomarker in Retinal Diseases: Characterization and Clinical Implications. J Ophthalmol 2021; 2021:6096017. [PMID: 34956669 PMCID: PMC8709761 DOI: 10.1155/2021/6096017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023] Open
Abstract
Hyperreflective foci (HRF) is a term coined to depict hyperreflective dots or roundish lesions within retinal layers visualized through optical coherence tomography (OCT). Histopathological correlates of HRF are not univocal, spacing from migrating retinal pigment epithelium cells, lipid-laden macrophages, microglial cells, and extravasated proteinaceous or lipid material. Despite this, HRF can be considered OCT biomarkers for disease progression, treatment response, and prognosis in several retinal diseases, including diabetic macular edema, age-related macular degeneration (AMD), retinal vascular occlusions, and inherited retinal dystrophies. The structural features and topographic location of HRF guide the interpretation of their significance in different pathological conditions. The presence of HRF less than 30 μm with reflectivity comparable to the retinal nerve fiber layer in the absence of posterior shadowing in diabetic macular edema indicates an inflammatory phenotype with a better response to steroidal treatment. In AMD, HRF overlying drusen are associated with the development of macular neovascularization, while parafoveal drusen and HRF predispose to macular atrophy. Thus, HRF can be considered a key biomarker in several common retinal diseases. Their recognition and critical interpretation via multimodal imaging are vital to support clinical strategies and management.
Collapse
|
4
|
Chen L, Messinger JD, Ferrara D, Freund KB, Curcio CA. Stages of Drusen-Associated Atrophy in Age-Related Macular Degeneration Visible via Histologically Validated Fundus Autofluorescence. Ophthalmol Retina 2021; 5:730-742. [PMID: 33217617 PMCID: PMC9749404 DOI: 10.1016/j.oret.2020.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To determine histologic correlates for stages of drusen-associated atrophy observed with fundus autofluorescence (FAF) and color fundus photography (CFP), of eyes with advanced age-related macular degeneration (AMD). DESIGN Case study and clinicopathologic correlation. PARTICIPANT A white woman with AMD findings of inactive subretinal fibrosis (right eye) and untreated nonexudative type 1 macular neovascularization (left eye) was followed for 9 years before death at 90 years of age. METHODS Eyes preserved 6.25 hours after death were postfixed in osmium tannic acid paraphenylenediamine and were prepared for submicrometer epoxy resin sections (115 and 90 from the right and left eye, respectively), with 19 aligned to clinical B-scans. Drusen visible by CFP at the last visit were assigned to 4 stages of FAF: stage 1, isoautofluorescence; stage 2, mildly uniform hyperautofluorescence; stage 3, a ring of hyperautofluorescence around a center of the hypoautofluorescence; and stage 4, uniform hypoautofluorescence. MAIN OUTCOME MEASURES Light microscopic morphologic features at known FAF stages, including druse size, druse contents, and changes in overlying retinal pigment epithelium (RPE), photoreceptors, and external limiting membrane (ELM). RESULTS Histologic examination of 166 drusen demonstrated that stage 1 isoautofluorescent drusen were visible on CFP. Hyperautofluorescence in stage 2 corresponded to short photoreceptors and complete coverage by RPE. Hypoautofluorescence in stages 3 and 4 corresponded to different extents of RPE atrophy (RPE gap and no RPE, respectively). Of stage 4 drusen, 67% showed no outer nuclear layer (ONL) and an undetectable ELM. Stage 4 included a high proportion of refractile drusen (82%) with many calcific nodules, visible on CFP. CONCLUSIONS We present the first direct clinicopathologic correlation for FAF imaging of drusen-associated atrophy. Our data support 4 FAF stages of drusen-associated atrophy. Stage 2 is the earliest detected stage in which loss of screening by photoreceptor photopigment contributes to uniform hyperautofluorescence. Stages 3 and 4 comport with incomplete RPE and outer retinal atrophy as defined by the Classification of Atrophy Meetings group. Loss of RPE, ONL, and ELM in stage 4 indicates that atrophy can begin over individual drusen. Findings will help the identification of new therapeutic approaches and clinical study end points.
Collapse
Affiliation(s)
- Ling Chen
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham Alabama, USA,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham Alabama, USA
| | | | - K. Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, NY, USA,Department of Ophthalmology, New York University School of Medicine, New York, NY, USA,Columbia University College of Physicians and Surgeons, Harkness Eye Institute, New York, NY, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham Alabama, USA,Corresponding Address: Christine A. Curcio, PhD; Department of Ophthalmology and Visual Sciences; EyeSight Foundation of Alabama Vision Research Laboratories; 1670 University Boulevard Room 360; University of Alabama School of Medicine; Birmingham AL 35294-0099;
| |
Collapse
|
5
|
Abstract
PURPOSE To correlate drusen morphology and outer retinal status with autofluorescence (AF) imaging in patients with intermediate age-related macular degeneration. METHODS Drusen type and morphology were analyzed using color fundus photography and spectral-domain optic coherence tomography, whereas fundus AF was used for drusen AF evaluation. Additional structural changes on spectral-domain optic coherence tomography, such as disruption of external limiting membrane, ellipsoid zone, and retinal pigment epithelium/Bruch membrane complex, as well as the presence of choroidal hypertransmission at correspondent locations were also evaluated and correlated with fundus AF findings. Spearman's correlation coefficient was used to analyze the correlation between spectral-domain optic coherence tomography morphological characteristics of drusen and AF appearance of the corresponding drusen. Strength of correlation was calculated (r), and a P value < 0.05 was considered statistically significant. RESULTS Two hundred and twenty-eight drusen from 53 eyes of 53 patients were analyzed, 130 soft drusen (57.02%) and 98 cuticular drusen (42.98%). Sixty percent of the drusen were isoautofluorescent (n = 136), 35% hyperautofluorescent (n = 80), and 5% hypoautofluorescent (n = 12). We found positive correlation between drusen AF and hyperreflective foci (r = 0.4). Outer retinal layers morphology (external limiting membrane and ellipsoid zone status and hypertransmission) also correlates with autofluorescent findings (r = 0.3). CONCLUSION Multimodal imaging reveals a broad spectrum of ultrastructural changes, which may reflect different stages in the evolution of drusen. Our results suggest that drusen morphological characteristics and autofluorescent findings are correlated but other factors or cofactors may be involved. The described correlations will help us understand new progression biomarkers of nonexudative age-related macular degeneration.
Collapse
|
6
|
Montesano G, Ometto G, Higgins BE, Iester C, Balaskas K, Tufail A, Chakravarthy U, Hogg RE, Crabb DP. Structure-Function Analysis in Macular Drusen With Mesopic and Scotopic Microperimetry. Transl Vis Sci Technol 2021; 9:43. [PMID: 33442497 PMCID: PMC7774115 DOI: 10.1167/tvst.9.13.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/18/2020] [Indexed: 11/28/2022] Open
Abstract
Purpose To investigate the structure–function relationship in eyes with drusen with mesopic and scotopic microperimetry. Methods We analyzed structural and functional data from 43 eyes with drusen. Functional data were acquired with mesopic and scotopic two-color (red and cyan) microperimetry. Normative values were calculated using data from 56 healthy eyes. Structural measurements were green autofluorescence and dense macular optical coherence tomography scans. The latter were used to calculate the retinal pigment epithelium elevation (RPE-E) and the photoreceptor reflectivity ratio (PRR). The pointwise structure–function relationship was measured with linear mixed models having the log-transformed structural parameters as predictors and the sensitivity loss (SL, deviation from normal) as the response variable. Results In the univariable analysis, the structural predictors were all significantly correlated (P < 0.05) with the SL in the mesopic and scotopic tests. In a multivariable model, mesopic microperimetry yielded the best structure–function relationship. All predictors were significant (P < 0.05), but the predictive power was weak (best R2 = 0.09). The relationship was improved when analyzing locations with abnormal RPE-E (best R2 = 0.18). Conclusions Mesopic microperimetry shows better structure–function relationship compared to scotopic microperimetry; the relationship is weak, likely due to the early functional damage and the small number of tested locations affected by drusen. The relationship is stronger when locations with drusen are isolated for the mesopic and scotopic cyan test. Translational Relevance These results could be useful to devise integrated structure–function methods to detect disease progression in intermediate age-related macular degeneration.
Collapse
Affiliation(s)
- Giovanni Montesano
- City, University of London-Optometry and Visual Sciences, London, UK.,NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Giovanni Ometto
- City, University of London-Optometry and Visual Sciences, London, UK.,NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Bethany E Higgins
- City, University of London-Optometry and Visual Sciences, London, UK
| | - Costanza Iester
- City, University of London-Optometry and Visual Sciences, London, UK
| | - Konstantinos Balaskas
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Adnan Tufail
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Usha Chakravarthy
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Ruth E Hogg
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - David P Crabb
- City, University of London-Optometry and Visual Sciences, London, UK
| |
Collapse
|
7
|
Ocular Imaging for Enhancing the Understanding, Assessment, and Management of Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:33-66. [PMID: 33847997 DOI: 10.1007/978-3-030-66014-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive neuro-retinal disease and the leading cause of central vision loss among elderly individuals in the developed countries. Modern ocular imaging technologies constitute an essential component of the evaluation of these patients and have contributed extensively to our understanding of the disease. A challenge with any review of ocular imaging technologies is the rapid pace of progress and evolution of these instruments. Nonetheless, for proper and optimal use of these technologies, it is essential for the user to understand the technical principles underlying the imaging modality and their role in assessing the disease in various settings. Indeed, AMD, like many other retinal diseases, benefits from a multimodal imaging approach to optimally characterize the disease. In this chapter, we will review the various imaging technologies currently used in the assessment and management of AMD.
Collapse
|
8
|
Apigenin Protects Mouse Retina against Oxidative Damage by Regulating the Nrf2 Pathway and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9420704. [PMID: 32509154 PMCID: PMC7244986 DOI: 10.1155/2020/9420704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a critical factor in the pathology of age-related macular degeneration (AMD). Apigenin (AP) is a flavonoid with an outstanding antioxidant activity. We had previously observed that AP protected APRE-19 cells against oxidative injury in vitro. However, AP has poor water and fat solubility, which determines its low oral bioavailability. In this study, we prepared the solid dispersion of apigenin (AP-SD). The solubility and dissolution of AP-SD was significantly better than that of the original drug, so the oral bioavailability in rats was better than that of the original drug. Then, the effects of AP-SD on the retina of a model mouse with dry AMD were assessed by fundus autofluorescence (FAF), optical coherence tomography (OCT), and electron microscopy; the results revealed that AP-SD alleviated retinopathy. Further research found that AP-SD promoted the nuclear translocation of Nrf2 and increased expression levels of the Nrf2 and target genes HO-1 and NQO-1. AP-SD enhanced the activities of SOD and GSH-Px and decreased the levels of ROS and MDA. Furthermore, AP-SD upregulated the expressions of p62 and LC3II in an Nrf2-dependent manner. However, these effects of AP-SD were observed only in the retina of Nrf2 WT mice, not in Nrf2 KO mice. In addition, the therapeutic effect of AP-SD was dose dependent, and AP did not work. In conclusion, AP-SD significantly enhanced the bioavailability of the original drug and reduced retinal oxidative injury in the model mouse of dry AMD in vivo. The results of the underlying mechanism showed that AP-SD upregulated the expression of antioxidant enzymes through the Nrf2 pathway and upregulated autophagy, thus inhibiting retinal oxidative damage. AP-SD may be a potential compound for the treatment of dry AMD.
Collapse
|
9
|
Hammer M, Schultz R, Hasan S, Sauer L, Klemm M, Kreilkamp L, Zweifel L, Augsten R, Meller D. Fundus Autofluorescence Lifetimes and Spectral Features of Soft Drusen and Hyperpigmentation in Age-Related Macular Degeneration. Transl Vis Sci Technol 2020; 9:20. [PMID: 32821492 PMCID: PMC7401897 DOI: 10.1167/tvst.9.5.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/06/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose To investigate the autofluorescence lifetimes as well as spectral characteristics of soft drusen and retinal hyperpigmentation in age-related macular degeneration (AMD). Methods Forty-three eyes with nonexudative AMD were included in this study. Fluorescence lifetime imaging ophthalmoscopy (FLIO), which detects autofluorescence decay over time in the short (SSC) and long (LSC) wavelength channel, was performed. The mean autofluorescence lifetime (τm) and the spectral ratio (sr) of autofluorescence emission in the SSC and LSC were recorded and analyzed. In total, 2760 soft drusen and 265 hyperpigmented areas were identified from color fundus photographs and spectral domain optical coherence tomography (SD-OCT) images and superimposed onto their respective AF images. τm and sr of these lesions were compared with fundus areas without drusen. For clearly hyperfluorescent drusen, the local differences compared to fundus areas without drusen were determined for lifetimes and sr. Results Hyperpigmentation showed significantly longer τm (SSC: 341 ± 81 vs. 289 ± 70 ps, P < 0.001; LSC: 406 ± 42 vs. 343 ± 42 ps, P < 0.001) and higher sr (0.621 ± 0.077 vs. 0.539 ± 0.083, P < 0.001) compared to fundus areas without hyperpigmentation or drusen. No significant difference in τm was found between soft drusen and fundus areas without drusen. However, the sr was significantly higher in soft drusen (0.555 ± 0.077 vs. 0.539 ± 0.081, P < 0.0005). Hyperfluorescent drusen showed longer τm than surrounding fundus areas without drusen (SSC: 18 ± 42 ps, P = 0.074; LSC: 16 ± 29 ps, P = 0.020). Conclusions FLIO can quantitatively characterize the autofluorescence of the fundus, drusen, and hyperpigmentation in AMD. Translational Relevance The experimental FLIO technique was applied in a clinical investigation. As FLIO yields information on molecular changes in AMD, it might support future diagnostics.
Collapse
Affiliation(s)
- Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, University of Jena, Jena, Germany
| | - Rowena Schultz
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Somar Hasan
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Lydia Sauer
- John A. Moran Eye Center, Salt Lake City, UT, USA
| | - Matthias Klemm
- Technical University Ilmenau, Institute for Biomedical Techniques and Informatics, Ilmenau, Germany
| | - Lukas Kreilkamp
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Lynn Zweifel
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Regine Augsten
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| |
Collapse
|
10
|
Rodrigo-Diaz E, Tahir HJ, Kelly JM, Parry NRA, Aslam T, Murray IJ. The Light and the Dark of Early and Intermediate AMD: Cone- and Rod-Mediated Changes Are Linked to Fundus Photograph and FAF Abnormalities. Invest Ophthalmol Vis Sci 2020; 60:5070-5079. [PMID: 31801157 DOI: 10.1167/iovs.19-27971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this paper is to describe the extent to which scotopic and photopic measures of visual function predict color fundus photograph (CFP) and fundus autofluorescence (FAF) changes in early and intermediate nonexudative AMD. Methods Sixty-nine observers were recruited: 56 AMD patients (mean age, 73 ± 12.98 years) and 13 controls (mean age, 67.77 ± 9.72 years). A nonmydriatic retinal camera was used to obtain stereo fundus photographs and FAF images were recorded with a cSLO Heidelberg Spectralis HRA+OCT. Visual acuity (VA) was measured using an Early Treatment of Diabetic Retinopathy Study chart. Contrast sensitivity (CS) was assessed with a Pelli-Robson chart. Dark adaptation (DA) curves were recorded at 3° eccentricity using a PC-based technique. Analysis of these curves yielded five parameters: cone threshold (CT), cone time constant (CC), cone-rod break (α), slope of the second rod component (S2), and rod-rod break (β). Results Both cone and rod sensitivity recovery were grossly abnormal in the patients. The rod recovery slope (S2) most accurately predicted the fundus photograph-based grade and the FAF classification (ρ = 0.61 and ρ = 0.60, respectively; both P < 0.0001). CS showed a strong association with FAF (ρ = 0.50, P < 0.0001) and with fundus photograph-based grade (ρ = 0.38, P < 0.002). There was no correlation between VA and either imaging method. Conclusions Dynamic, rod-based measures most accurately reflect the severity of early AMD. Although less specific to AMD than DA changes, static photopic abnormalities such as CS also correspond with morphologic changes. Assessment of function in early AMD should include dynamic rod- and cone-mediated measurements of sensitivity recovery.
Collapse
Affiliation(s)
- Elena Rodrigo-Diaz
- Vision Science Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Humza J Tahir
- Vision Science Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jeremiah M Kelly
- Vision Science Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Neil R A Parry
- Vision Science Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Vision Science Centre, Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Tariq Aslam
- Vision Science Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Vision Science Centre, Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ian J Murray
- Vision Science Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Retinal Thickness Changes throughout the Natural History of Drusen in Age-related Macular Degeneration. Optom Vis Sci 2019; 95:648-655. [PMID: 30063666 DOI: 10.1097/opx.0000000000001256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SIGNIFICANCE Drusen are associated with retinal thinning in age-related macular degeneration (AMD). These changes, however, have mostly been examined at single time points, ignoring the evolution of drusen from emergence to regression. Understanding the full breadth of retinal changes associated with drusen will improve understanding of disease pathogenesis. PURPOSE The purpose of this study was to assess how the natural history of drusen affects retinal thickness, focusing on the photoreceptor and retinal pigment epithelium (RPE) layers. METHODS Spectral domain optical coherence tomography of subjects with intermediate AMD (n = 50) who attended the Centre for Eye Health, Sydney, Australia, for two separate visits (476 ± 16 days between visits) was extracted. Scans were automatically segmented with manufacturer software then assessed for drusen that had emerged, grown, or regressed between visits. For each identified lesion, the thickness of each retinal layer at the drusen peak and at adjacent drusen-free areas (150 μm nasal and temporal to the druse) was compared between visits. RESULTS Before drusen emergence, the RPE was significantly thicker at the drusen site (14.2 ± 2.6%) compared with neighboring drusen-free areas. There was a 71% sensitivity of RPE thickening predicting drusen emergence. Once drusen emerged, significant thinning of all outer retinal layers was observed, consistent with previous studies. Drusen growth was significantly correlated with thinning of the outer retina (r = -0.38, P < .001). Drusen regression resulted in outer retinal layers returning to thicknesses not significantly different from baseline. CONCLUSIONS The natural history of drusen is associated with RPE thickening before drusen emergence, thinning of the outer nuclear layer as well as photoreceptor and RPE layers proportional to drusen growth, and return to baseline thickness after drusen regression. These findings have useful clinical applications, providing a potential marker for predicting drusen emergence for AMD prognostic and intervention studies and highlighting that areas of normal retinal thickness in AMD may be former sites of regressed drusen.
Collapse
|
12
|
Bingöl Kızıltunç P, Şermet F. Fundus Autofluorescence Changes in Age-related Maculopathy. Turk J Ophthalmol 2019; 48:304-308. [PMID: 30605937 PMCID: PMC6330662 DOI: 10.4274/tjo.69260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives: The aim of this study was to describe the fundus autofluorescence (FAF) findings of age-related maculopathy and risk patterns associated with FAF changes. Materials and Methods: FAF images of 150 eyes with age-related maculopathy were evaluated retrospectively. FAF patterns were classified as normal, minimal change, focal increase, patchy, linear, lace-like, reticular, and speckled pattern. Correlation between patterns and visual acuity, pattern associations at initial visit, and focal atrophy development and pattern alterations during follow-up were evaluated. Results: At initial examination, 33.3% of the eyes showed no FAF pattern. In the other eyes, the most common patterns were reticular, focal increase, and patchy pattern at rates of 18%, 14.7%, and 11.3%, respectively. There was no correlation between pattern and visual acuity at initial visit. Two coexisting patterns were observed in 4.6% eyes, and the most common pattern in these combinations was reticular pattern (85.7%). Pattern alterations were observed in 5.3% of the eyes during follow-up. Half of these alterations involved transformation to reticular pattern or addition of reticular pattern to the initial pattern. In addition, 13.3% of the eyes developed focal atrophy during follow-up. Development of focal atrophy was more common with focal increase and reticular pattern, with rates of 45% and 30%, respectively. Conclusion: Presence of reticular pattern may be a risk factor for change and progression of FAF findings in age-related maculopathy.
Collapse
Affiliation(s)
| | - Figen Şermet
- Ankara University Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey
| |
Collapse
|
13
|
Yiu G, Tieu E, Munevar C, Wong B, Cunefare D, Farsiu S, Garzel L, Roberts J, Thomasy SM. In Vivo Multimodal Imaging of Drusenoid Lesions in Rhesus Macaques. Sci Rep 2017; 7:15013. [PMID: 29101353 PMCID: PMC5670133 DOI: 10.1038/s41598-017-14715-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023] Open
Abstract
Nonhuman primates are the only mammals to possess a true macula similar to humans, and spontaneously develop drusenoid lesions which are hallmarks of age-related macular degeneration (AMD). Prior studies demonstrated similarities between human and nonhuman primate drusen based on clinical appearance and histopathology. Here, we employed fundus photography, spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF), and infrared reflectance (IR) to characterize drusenoid lesions in aged rhesus macaques. Of 65 animals evaluated, we identified lesions in 20 animals (30.7%). Using the Age-Related Eye Disease Study 2 (AREDS2) grading system and multimodal imaging, we identified two distinct drusen phenotypes - 1) soft drusen that are larger and appear as hyperreflective deposits between the retinal pigment epithelium (RPE) and Bruch's membrane on SD-OCT, and 2) hard, punctate lesions that are smaller and undetectable on SD-OCT. Both exhibit variable FAF intensities and are poorly visualized on IR. Eyes with drusen exhibited a slightly thicker RPE compared with control eyes (+3.4 μm, P=0.012). Genetic polymorphisms associated with drusenoid lesions in rhesus monkeys in ARMS2 and HTRA1 were similar in frequency between the two phenotypes. These results refine our understanding of drusen development, and provide insight into the absence of advanced AMD in nonhuman primates.
Collapse
Affiliation(s)
- Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, USA.
| | - Eric Tieu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, USA
| | - Christian Munevar
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Brittany Wong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - David Cunefare
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Laura Garzel
- California National Primate Research Center, Davis, California, USA
| | - Jeffrey Roberts
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,California National Primate Research Center, Davis, California, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
14
|
Abstract
: Fundus autofluorescence (FAF) provides detailed insight into the health of the retinal pigment epithelium (RPE). This is highly valuable in age-related macular degeneration (AMD) as RPE damage is a hallmark of the disease. The purpose of this paper is to critically appraise current clinical descriptions regarding the appearance of AMD using FAF and to integrate these findings into a chair-side reference. A wide variety of FAF patterns have been described in AMD, which is consistent with the clinical heterogeneity of the disease. In particular, FAF imaging in early to intermediate AMD has the capacity to reveal RPE alterations in areas that appear normal on funduscopy, which aids in the stratification of cases and may have visually significant prognostic implications. It can assist in differential diagnoses and also represents a reliable, sensitive method for distinguishing reticular pseudodrusen. FAF is especially valuable in the detection, evaluation, and monitoring of geographic atrophy and has been used as an endpoint in clinical trials. In neovascular AMD, FAF reveals distinct patterns of classic choroidal neovascularization noninvasively and may be especially useful for determining which eyes are likely to benefit from therapeutic intervention. FAF represents a rapid, effective, noninvasive imaging method that has been underutilized, and incorporation into the routine assessment of AMD cases should be considered. However, the practicing clinician should also be aware of the limitations of the modality, such as in the detection of foveal involvement and in the distinction of phenotypes (hypo-autofluorescent drusen from small areas of geographic atrophy).
Collapse
|
15
|
Yung M, Klufas MA, Sarraf D. Clinical applications of fundus autofluorescence in retinal disease. Int J Retina Vitreous 2016; 2:12. [PMID: 27847630 PMCID: PMC5088473 DOI: 10.1186/s40942-016-0035-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/15/2016] [Indexed: 12/30/2022] Open
Abstract
Fundus autofluorescence (FAF) is a non-invasive retinal imaging modality used in clinical practice to provide a density map of lipofuscin, the predominant ocular fluorophore, in the retinal pigment epithelium. Multiple commercially available imaging systems, including the fundus camera, the confocal scanning laser ophthalmoscope, and the ultra-widefield imaging device, are available to the clinician. Each offers unique advantages for evaluating various retinal diseases. The clinical applications of FAF continue to expand. It is now an essential tool for evaluating age related macular degeneration, macular dystrophies, retinitis pigmentosa, white dot syndromes, retinal drug toxicities, and various other retinal disorders. FAF may detect abnormalities beyond those detected on funduscopic exam, fluorescein angiography, or optical coherence tomography, and can be used to elucidate disease pathogenesis, form genotype-phenotype correlations, diagnose and monitor disease, and evaluate novel therapies. Given its ease of use, non-invasive nature, and value in characterizing retinal disease, FAF enjoys increasing clinical relevance. This review summarizes common ocular fluorophores, imaging modalities, and FAF findings for a wide spectrum of retinal disorders.
Collapse
Affiliation(s)
- Madeline Yung
- Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles, CA 90095 USA
| | - Michael A. Klufas
- Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles, CA 90095 USA
| | - David Sarraf
- Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles, CA 90095 USA
- Greater Los Angeles VA Healthcare Center, Los Angeles, CA 90024 USA
| |
Collapse
|
16
|
Göbel AP, Fleckenstein M, Heeren TFC, Holz FG, Schmitz-Valckenberg S. In-vivo mapping of drusen by fundus autofluorescence and spectral-domain optical coherence tomography imaging. Graefes Arch Clin Exp Ophthalmol 2015; 254:59-67. [DOI: 10.1007/s00417-015-3012-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/18/2015] [Accepted: 04/07/2015] [Indexed: 11/28/2022] Open
|
17
|
Wu Z, Luu CD, Ayton LN, Goh JK, Lucci LM, Hubbard WC, Hageman JL, Hageman GS, Guymer RH. Fundus autofluorescence characteristics of nascent geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 2015; 56:1546-52. [PMID: 25678689 DOI: 10.1167/iovs.14-16211] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE We examined the fundus autofluorescence (FAF) characteristics of nascent geographic atrophy (nGA), pathological features preceding the development of drusen-associated atrophy in eyes with age-related macular degeneration (AMD) that can be visualized using high-resolution optical coherence tomography (OCT). METHODS Spectral-domain OCT (SD-OCT) and FAF imaging were performed longitudinally in 221 eyes with intermediate AMD (having at least drusen >125 μm), and seven areas that developed drusen-associated atrophy in five eyes were examined and categorized with respect to FAF characteristics. These categories then were used to characterize 49 areas of nGA or drusen-associated atrophy on SD-OCT identified in a cross-sectional study with 230 participants with bilateral intermediate AMD. RESULTS Sequential imaging revealed that FAF characteristics in the atrophic areas could be grouped into three categories: predominantly hyperautofluorescent (hyperAF), presence of both hyper- and hypoautofluorescence (mixed AF), or predominantly hypoautofluorescent (hypoAF). In the cross-sectional study, the FAF characteristics were significantly dependent on the type of atrophic area (P = 0.002), where areas of nGA appeared most commonly as being mixed AF (63%), while areas of drusen-associated atrophy most commonly as hypoAF (86%). CONCLUSIONS Fundus autofluorescence imaging revealed that areas of nGA were most commonly characterized by both hyper- and hypoautofluorescent changes, which differs from areas of drusen-associated atrophy that most often appeared hypoautofluorescent. These findings provide important insights into the FAF characteristics of areas undergoing atrophic changes in eyes still considered to be in the early stages of AMD by current methods, and thus assist in the characterization of disease severity in these early stages.
Collapse
Affiliation(s)
- Zhichao Wu
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Victoria, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Victoria, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Victoria, Australia
| | - Jonathan K Goh
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Victoria, Australia
| | - Lucia M Lucci
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Center for Translational Medicine, University of Utah, Salt Lake City, Utah, United States
| | - William C Hubbard
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Center for Translational Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Jill L Hageman
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Center for Translational Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Gregory S Hageman
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Center for Translational Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Robyn H Guymer
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Victoria, Australia
| |
Collapse
|
18
|
Holz FG, Steinberg JS, Göbel A, Fleckenstein M, Schmitz-Valckenberg S. Fundus autofluorescence imaging in dry AMD: 2014 Jules Gonin lecture of the Retina Research Foundation. Graefes Arch Clin Exp Ophthalmol 2015; 253:7-16. [PMID: 25408425 DOI: 10.1007/s00417-014-2858-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022] Open
Abstract
Fundus autofluorescence (FAF) imaging allows for topographic mapping of intrisnic fluorophores in the retinal pigment epithelial cell monolayer, as well as mapping of other fluorophores that may occur with disease in the outer retina and the sub-neurosensory space. FAF imaging provides information not obtainable with other imaging modalities. Near-infrared fundus autofluorescence images can also be obtained in vivo, and may be largely melanin-derived. FAF imaging has been shown to be useful in a wide spectrum of macular and retinal diseases. The scope of applications now includes identification of diseased RPE in macular/retinal diseases, elucidating pathophysiological mechanisms, identification of early disease stages, refined phenotyping, identification of prognostic markers for disease progression, monitoring disease progression in the context of both natural history and interventional therapeutic studies, and objective assessment of luteal pigment distribution and density as well as RPE melanin distribution. Here, we review the use of FAF imaging in various phenotypic manifestations of dry AMD.
Collapse
Affiliation(s)
- Frank G Holz
- Department of Ophthalmology, University of Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Germany,
| | | | | | | | | |
Collapse
|
19
|
Wu Z, Ayton LN, Luu CD, Guymer RH. Relationship between Retinal Microstructures on Optical Coherence Tomography and Microperimetry in Age-Related Macular Degeneration. Ophthalmology 2014; 121:1445-52. [DOI: 10.1016/j.ophtha.2014.01.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022] Open
|
20
|
SUBRETINAL DRUSENOID DEPOSITS WITH INCREASED AUTOFLUORESCENCE IN EYES WITH RETICULAR PSEUDODRUSEN. Retina 2014; 34:69-76. [PMID: 23743636 DOI: 10.1097/iae.0b013e318295f701] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Characterisation of reticular pseudodrusen and their central target aspect in multi-spectral, confocal scanning laser ophthalmoscopy. Graefes Arch Clin Exp Ophthalmol 2013; 252:715-21. [DOI: 10.1007/s00417-013-2525-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/23/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022] Open
|