1
|
Chappell K, Colle R, El Asmar K, Gressier F, Bouligand J, Trabado S, Fève B, Becquemont L, Corruble E, Verstuyft C. Association of the GRIK4 rs1954787 polymorphism with clinical response in antidepressant-treated depressed patients: results from a prospective cohort and meta-analysis. Mol Psychiatry 2024:10.1038/s41380-024-02765-5. [PMID: 39462036 DOI: 10.1038/s41380-024-02765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Major Depressive Disorder (MDD) is the leading cause of disability worldwide. Genetic factors influence the effect of its main treatment option, antidepressant drugs (ATD). The GRIK4 rs1954787(T>C) genetic polymorphism was associated with response following 1-3 months of ATD treatment in some studies, but not others. We aimed to analyze its association with clinical outcomes in a cohort of 6-month ATD-treated patients and meta-analysis. Clinical data were obtained at baseline and after 1 (M1), 3 (M3), and 6 (M6) months of ATD treatment in 390 patients of the METADAP cohort. Mixed-effects models were used to assess the association of the GRIK4 rs1954787 polymorphism with the Hamilton Depression Rating Scale (HDRS) score and response and remission rates across time. Meta-analyses of ATD treatment response were performed with previously meta-analyzed data and METADAP. Compared to C allele carriers at M3 (n = 200), TT homozygotes at M3 (n = 66) had higher HDRS scores (coef = 3.37, 95% CI [1.30-5.54], Padj = 0.0046) and lower remission rates (OR = 0.36, 95% CI [0.16-0.76], Padj = 0.029). At M6, greater differences between TT homozygotes (n = 53) and C allele carriers (n = 152) were observed for HDRS scores (coef = 4.68, 95% CI [2.17-7.18], Padj = 0.00091) and remission rates (OR = 0.26, 95% CI [0.12-0.54], Padj = 0.0016). Meta-analyses of response were significant when comparing C vs T alleles (OR = 1.31, 95% CI [1.06-1.62], P = 0.014) and CC vs TT genotypes (OR = 1.63, 95% CI [1.10-2.38], P = 0.019). Altogether, our results support an association of the GRIK4 rs1954787(T>C) polymorphism with clinical improvement following ATD treatment. This association should be further assessed in other longitudinal studies. Its position within the glutamatergic system may help in understanding the mechanism of ATD action.
Collapse
Affiliation(s)
- Kenneth Chappell
- MOODS Team, INSERM UMR 1018, CESP, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Paris, F-94275, France
| | - Romain Colle
- MOODS Team, INSERM UMR 1018, CESP, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Khalil El Asmar
- MOODS Team, INSERM UMR 1018, CESP, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, F-94275, France
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Florence Gressier
- MOODS Team, INSERM UMR 1018, CESP, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Jérôme Bouligand
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Paris, F-94275, France
- Plateforme d'Expertises Maladies Rares Paris-Saclay, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
- Université Paris-Saclay, Faculté de Médecine, Unité Inserm UMRS 1185, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, 94276, France
| | - Séverine Trabado
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Paris, F-94275, France
- Université Paris-Saclay, Faculté de Médecine, Unité Inserm UMRS 1185, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, 94276, France
| | - Bruno Fève
- Sorbonne Université-INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, F-75012, France
| | - Laurent Becquemont
- MOODS Team, INSERM UMR 1018, CESP, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, F-94275, France
- Centre de recherche clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- MOODS Team, INSERM UMR 1018, CESP, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Céline Verstuyft
- MOODS Team, INSERM UMR 1018, CESP, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, F-94275, France.
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Paris, F-94275, France.
- Centre de Ressources Biologiques Paris-Saclay, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France.
| |
Collapse
|
2
|
Genetics of antidepressant response and treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023. [DOI: 10.1016/bs.pbr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Saez E, Erkoreka L, Moreno-Calle T, Berjano B, Gonzalez-Pinto A, Basterreche N, Arrue A. Genetic variables of the glutamatergic system associated with treatment-resistant depression: A review of the literature. World J Psychiatry 2022; 12:884-896. [PMID: 36051601 PMCID: PMC9331449 DOI: 10.5498/wjp.v12.i7.884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/29/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Depression is a common, recurrent mental disorder and one of the leading causes of disability and global burden of disease worldwide. Up to 15%-40% of cases do not respond to diverse pharmacological treatments and, thus, can be defined as treatment-resistant depression (TRD). The development of biomarkers predictive of drug response could guide us towards personalized and earlier treatment. Growing evidence points to the involvement of the glutamatergic system in the pathogenesis of TRD. Specifically, the N-methyl-D-aspartic acid receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), which are targeted by ketamine and esketamine, are proposed as promising pathways. A literature search was performed to identify studies on the genetics of the glutamatergic system in depression, focused on variables related to NMDARs and AMPARs. Our review highlights GRIN2B, which encodes the NR2B subunit of NMDAR, as a candidate gene in the pathogenesis of TRD. In addition, several studies have associated genes encoding AMPAR subunits with symptomatic severity and suicidal ideation. These genes encoding glutamatergic receptors could, therefore, be candidate genes for understanding the etiopathogenesis of TRD, as well as for understanding the pharmacodynamic mechanisms and response to ketamine and esketamine treatment.
Collapse
Affiliation(s)
- Estela Saez
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
| | - Leire Erkoreka
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
- Mental Health Network Group, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Teresa Moreno-Calle
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
- Mental Health Network Group, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Belen Berjano
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
| | - Ana Gonzalez-Pinto
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain
- Department of Psychiatry, Araba Integrated Health Organization, Osakidetza-Basque Health Service, CIBERSAM, Vitoria-Gasteiz 01004, Spain
- Severe Mental Disorders Group, Bioaraba Health Research Institute, Vitoria-Gasteiz 01009, Spain
| | - Nieves Basterreche
- Zamudio Hospital, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Zamudio 48170, Spain
- Integrative Research Group in Mental Health, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Aurora Arrue
- Mental Health Network Group, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Barakaldo 48903, Spain
| |
Collapse
|
4
|
Poweleit EA, Aldrich SL, Martin LJ, Hahn D, Strawn JR, Ramsey LB. Pharmacogenetics of Sertraline Tolerability and Response in Pediatric Anxiety and Depressive Disorders. J Child Adolesc Psychopharmacol 2019; 29:348-361. [PMID: 31066578 DOI: 10.1089/cap.2019.0017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: To determine whether genetic variants in a pharmacokinetic gene (the number of CYP2C19 reduced function alleles [RFAs]), and in pharmacodynamic genes (HTR2A, SLC6A4, and GRIK4) influence sertraline tolerability and response in a cohort of pediatric patients with anxiety and depressive disorders. Methods: A retrospective analysis was performed using the electronic medical record data of 352 patients <19 years of age being treated for anxiety and/or depressive disorders with sertraline and who underwent routine clinical CYP2C19 genotyping. Additional genotyping and analysis of variants in HTR2A, SLC6A4, and GRIK4 were conducted for 249 patients. Multivariate regression models testing for associations with CYP2C19 were adjusted for concomitant use of interacting medications. Combinatorial classification and regression tree (CART) analyses containing all pharmacokinetic and pharmacodynamic genes and clinical factors were performed. Results: The maximum sertraline dose during the initial titration period of sertraline was inversely associated with the number of CYP2C19 RFAs and sertraline dose at 60 (p = 0.025) and 90 days (p = 0.025). HTR2A rs6313 was associated with sertraline dose (p = 0.011) and time to the average maximum sertraline dose (p = 0.039). Regarding efficacy, the number of CYP2C19 RFAs was not associated with the sertraline dose at the time of response (p = 0.22), whereas for the pharmacodynamic genes, only HTR2A rs6313 was associated with response dose (p = 0.022). An association was observed between predicted expression levels of SLC6A4 and the duration on sertraline (p = 0.025). Combinatorial CART and multivariate regression analyses implicated that pharmacodynamic genes and clinical factors influence the maximum sertraline dose and response dose. The total number of side effects was not associated with any of the variants tested. Conclusion: Both pharmacokinetic and pharmacodynamic factors, in addition to clinical and demographic components, influence sertraline dose, response, and tolerability, thereby necessitating further research to assess for the validity of these pharmacogenetic associations in children and adolescents.
Collapse
Affiliation(s)
- Ethan A Poweleit
- 1 Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stacey L Aldrich
- 2 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa J Martin
- 2 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,3 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - David Hahn
- 4 Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey R Strawn
- 5 Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio.,6 Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Laura B Ramsey
- 1 Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,2 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,4 Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
5
|
Caraci F, Calabrese F, Molteni R, Bartova L, Dold M, Leggio GM, Fabbri C, Mendlewicz J, Racagni G, Kasper S, Riva MA, Drago F. International Union of Basic and Clinical Pharmacology CIV: The Neurobiology of Treatment-resistant Depression: From Antidepressant Classifications to Novel Pharmacological Targets. Pharmacol Rev 2018; 70:475-504. [PMID: 29884653 DOI: 10.1124/pr.117.014977] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses and a major cause of morbidity worldwide. Currently available antidepressants are effective for most patients, although around 30% are considered treatment resistant (TRD), a condition that is associated with a significant impairment of cognitive function and poor quality of life. In this respect, the identification of the molecular mechanisms contributing to TRD represents an essential step for the design of novel and more efficacious drugs able to modify the clinical course of this disorder and increase remission rates in clinical practice. New insights into the neurobiology of TRD have shed light on the role of a number of different mechanisms, including the glutamatergic system, immune/inflammatory systems, neurotrophin function, and epigenetics. Advances in drug discovery processes in TRD have also influenced the classification of antidepressant drugs and novel classifications are available, such as the neuroscience-based nomenclature that can incorporate such advances in drug development for TRD. This review aims to provide an up-to-date description of key mechanisms in TRD and describe current therapeutic strategies for TRD before examining novel approaches that may ultimately address important neurobiological mechanisms not targeted by currently available antidepressants. All in all, we suggest that drug targeting different neurobiological systems should be able to restore normal function but must also promote resilience to reduce the long-term vulnerability to recurrent depressive episodes.
Collapse
Affiliation(s)
- F Caraci
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - F Calabrese
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - R Molteni
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - L Bartova
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - M Dold
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - G M Leggio
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - C Fabbri
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - J Mendlewicz
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - G Racagni
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - S Kasper
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - M A Riva
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - F Drago
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| |
Collapse
|
6
|
Gonda X, Petschner P, Eszlari N, Baksa D, Edes A, Antal P, Juhasz G, Bagdy G. Genetic variants in major depressive disorder: From pathophysiology to therapy. Pharmacol Ther 2018; 194:22-43. [PMID: 30189291 DOI: 10.1016/j.pharmthera.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In spite of promising preclinical results there is a decreasing number of new registered medications in major depression. The main reason behind this fact is the lack of confirmation in clinical studies for the assumed, and in animals confirmed, therapeutic results. This suggests low predictive value of animal studies for central nervous system disorders. One solution for identifying new possible targets is the application of genetics and genomics, which may pinpoint new targets based on the effect of genetic variants in humans. The present review summarizes such research focusing on depression and its therapy. The inconsistency between most genetic studies in depression suggests, first of all, a significant role of environmental stress. Furthermore, effect of individual genes and polymorphisms is weak, therefore gene x gene interactions or complete biochemical pathways should be analyzed. Even genes encoding target proteins of currently used antidepressants remain non-significant in genome-wide case control investigations suggesting no main effect in depression, but rather an interaction with stress. The few significant genes in GWASs are related to neurogenesis, neuronal synapse, cell contact and DNA transcription and as being nonspecific for depression are difficult to harvest pharmacologically. Most candidate genes in replicable gene x environment interactions, on the other hand, are connected to the regulation of stress and the HPA axis and thus could serve as drug targets for depression subgroups characterized by stress-sensitivity and anxiety while other risk polymorphisms such as those related to prominent cognitive symptoms in depression may help to identify additional subgroups and their distinct treatment. Until these new targets find their way into therapy, the optimization of current medications can be approached by pharmacogenomics, where metabolizing enzyme polymorphisms remain prominent determinants of therapeutic success.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Kutvolgyi Clinical Centre, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| | - Peter Petschner
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Andrea Edes
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Neuroscience and Psychiatry Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Gyorgy Bagdy
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Peripheral biomarkers of major depression and antidepressant treatment response: Current knowledge and future outlooks. J Affect Disord 2018; 233:3-14. [PMID: 28709695 PMCID: PMC5815949 DOI: 10.1016/j.jad.2017.07.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In recent years, we have accomplished a deeper understanding about the pathophysiology of major depressive disorder (MDD). Nevertheless, this improved comprehension has not translated to improved treatment outcome, as identification of specific biologic markers of disease may still be crucial to facilitate a more rapid, successful treatment. Ongoing research explores the importance of screening biomarkers using neuroimaging, neurophysiology, genomics, proteomics, and metabolomics measures. RESULTS In the present review, we highlight the biomarkers that are differentially expressed in MDD and treatment response and place a particular emphasis on the most recent progress in advancing technology which will continue the search for blood-based biomarkers. LIMITATIONS Due to space constraints, we are unable to detail all biomarker platforms, such as neurophysiological and neuroimaging markers, although their contributions are certainly applicable to a biomarker review and valuable to the field. CONCLUSIONS Although the search for reliable biomarkers of depression and/or treatment outcome is ongoing, the rapidly-expanding field of research along with promising new technologies may provide the foundation for identifying key factors which will ultimately help direct patients toward a quicker and more effective treatment for MDD.
Collapse
|
8
|
Abstract
The standard of care for antidepressant treatment in major depressive disorder (MDD) is a trial-and-error approach. Patients often have to undergo multiple medication trials for weeks to months before finding an effective treatment. Clinical factors such as severity of baseline symptoms and the presence of specific individual (anhedonia or insomnia) or cluster (atypical, melancholic, or anxious) of symptoms are commonly used without any evidence of their utility in selecting among currently available antidepressants. Genomic and proteomic biomarker have gained recent attention for their potential in informing antidepressant medication selection. In this report, we have reviewed some of the major pharmacogenomics studies along with individual genetic and proteomic biomarker of antidepressant response. Additionally, we have reviewed the blood-based protein biomarkers that can inform selection of one antidepressant over another. Among all currently available biomarkers, C-reactive protein (CRP) appears to be the most promising and pragmatic choice. Low CRP (<1 mg/L) in patients with MDD predicts better response to escitalopram while higher levels are associated with better response to noradrenergic/dopaminergic antidepressants. Future studies are needed to demonstrate the superiority of a CRP-based treatment assignment over high-quality measurement-based care in real-world clinical practices.
Collapse
Affiliation(s)
- Manish K Jha
- University of Texas Southwestern, Dallas, TX, USA.
| | | |
Collapse
|
9
|
Genetic Studies on the Tripartite Glutamate Synapse in the Pathophysiology and Therapeutics of Mood Disorders. Neuropsychopharmacology 2017; 42:787-800. [PMID: 27510426 PMCID: PMC5312057 DOI: 10.1038/npp.2016.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023]
Abstract
Both bipolar disorder (BD) and major depressive disorder (MDD) have high morbidity and share a genetic background. Treatment options for these mood disorders are currently suboptimal for many patients; however, specific genetic variables may be involved in both pathophysiology and response to treatment. Agents such as the glutamatergic modulator ketamine are effective in treatment-resistant mood disorders, underscoring the potential importance of the glutamatergic system as a target for improved therapeutics. Here we review genetic studies linking the glutamatergic system to the pathophysiology and therapeutics of mood disorders. We screened 763 original genetic studies of BD or MDD that investigated genes encoding targets of the pathway/mediators related to the so-called tripartite glutamate synapse, including pre- and post-synaptic neurons and glial cells; 60 papers were included in this review. The findings suggest the involvement of glutamate-related genes in risk for mood disorders, treatment response, and phenotypic characteristics, although there was no consistent evidence for a specific gene. Target genes of high interest included GRIA3 and GRIK2 (which likely play a role in emergent suicidal ideation after antidepressant treatment), GRIK4 (which may influence treatment response), and GRM7 (which potentially affects risk for mood disorders). There was stronger evidence that glutamate-related genes influence risk for BD compared with MDD. Taken together, the studies show a preliminary relationship between glutamate-related genes and risk for mood disorders, suicide, and treatment response, particularly with regard to targets on metabotropic and ionotropic receptors.
Collapse
|
10
|
Pharmacogenetics and Imaging-Pharmacogenetics of Antidepressant Response: Towards Translational Strategies. CNS Drugs 2016; 30:1169-1189. [PMID: 27752945 DOI: 10.1007/s40263-016-0385-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genetic variation underlies both the response to antidepressant treatment and the occurrence of side effects. Over the past two decades, a number of pharmacogenetic variants, among these the SCL6A4, BDNF, FKBP5, GNB3, GRIK4, and ABCB1 genes, have come to the forefront in this regard. However, small effects sizes, mixed results in independent samples, and conflicting meta-analyses results led to inherent difficulties in the field of pharmacogenetics translating these findings into clinical practice. Nearly all antidepressant pharmacogenetic variants have potentially pleiotropic effects in which they are associated with major depressive disorder, intermediate phenotypes involved in emotional processes, and brain areas affected by antidepressant treatment. The purpose of this article is to provide a comprehensive review of the advances made in the field of pharmacogenetics of antidepressant efficacy and side effects, imaging findings of antidepressant response, and the latest results in the expanding field of imaging-pharmacogenetics studies. We suggest there is mounting evidence that genetic factors exert their impact on treatment response by influencing brain structural and functional changes during antidepressant treatment, and combining neuroimaging and genetic methods may be a more powerful way to detect biological mechanisms of response than either method alone. The most promising imaging-pharmacogenetics findings exist for the SCL6A4 gene, with converging associations with antidepressant response, frontolimbic predictors of affective symptoms, and normalization of frontolimbic activity following antidepressant treatment. More research is required before imaging-pharmacogenetics informed personalized medicine can be applied to antidepressant treatment; nevertheless, inroads have been made towards assessing genetic and neuroanatomical liability and potential clinical application.
Collapse
|
11
|
Minelli A, Congiu C, Ventriglia M, Bortolomasi M, Bonvicini C, Abate M, Sartori R, Gainelli G, Gennarelli M. Influence of GRIK4 genetic variants on the electroconvulsive therapy response. Neurosci Lett 2016; 626:94-8. [PMID: 27222927 DOI: 10.1016/j.neulet.2016.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 01/27/2023]
Abstract
Several lines of evidence have shown the involvement of the glutamatergic system in the function of electroconvulsive therapy (ECT). In particular, patients with treatment resistant depression (TRD) and chronic depression have lower levels of glutamate/glutamine than controls, and ECT can reverse this deficit. Genetic factors might contribute to modulating the mechanisms underlying ECT. This study aimed to evaluate the relationship between three polymorphisms (rs1954787, rs4936554 and rs11218030) of the glutamate receptor ionotropic kainate 4 (GRIK4) gene and responsiveness to ECT treatment in a sample of one hundred individuals, TRD or depressive Bipolar Disorder patients resistant to pharmacological treatments. The results revealed that GRIK4 variants were significantly associated with the response to ECT. In particular, we found that patients carrying the G allele of the GRIK4 rs11218030 had a significantly poorer response to ECT (p=2.71×10(-4)), showing five times the risk of relapse after ECT compared to the AA homozygotes. Analogously, patients carrying the GG rs1954787 genotype and rs4936554A allele carriers presented a double risk of lack of response after ECT (p=0.013 and p=0.040, respectively). In conclusion, the current study provides new evidence, indicating that some GRIK4 variants modulate the response to ECT in patients with depression resistant to treatment, suggesting a role for kainate receptor modulation.
Collapse
Affiliation(s)
- Alessandra Minelli
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Brescia, Italy.
| | - Chiara Congiu
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Brescia, Italy
| | - Mariacarla Ventriglia
- Department of Neuroscience, Fatebenefratelli Foundation, AFaR Division, Fatebenefratelli Hospital-Isola Tiberina, Rome, Italy
| | | | - Cristian Bonvicini
- Genetic Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maria Abate
- Psychiatric Hospital "Villa Santa Chiara", Verona, Italy
| | - Riccardo Sartori
- Department of Philosophy, Education, Psychology University of Verona, Verona, Italy
| | | | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Brescia, Italy; Genetic Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
12
|
Kawaguchi DM, Glatt SJ. GRIK4 polymorphism and its association with antidepressant response in depressed patients: a meta-analysis. Pharmacogenomics 2015; 15:1451-9. [PMID: 25303296 DOI: 10.2217/pgs.14.96] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM This study aimed to evaluate the relationship between a human GRIK4 gene polymorphism (rs1954787) and responsiveness to antidepressant treatment in depressed patients. METHODS A meta-analysis was carried out on five studies. Pooled odds ratios (ORs), 95% CIs and a χ(2) test measuring heterogeneity were calculated. A test of publication bias was also conducted. RESULTS Alleles and genotypes from a total of 2169 depressed patients were analyzed. The results showed that the C allele appeared more frequently than the T allele in responders to treatment (OR: 1.22; 95% CI: 1.035-1.445; z = 2.36; p = 0.018). Similarly, CC homozygotes were more likely than TT homozygotes to respond to treatment (OR: 1.45; 95% CI: 1.107-1.913; z = 2.69; p = 0.007). No evidence of publication bias was detected. CONCLUSION Subjects possessing the C allele or CC genotype of the GRIK4 polymorphism rs1954787 are more likely to respond to antidepressant treatment relative to subjects harboring the T allele and TT genotype. Additional replication of this result is required before this association can be considered definitive, after which it may become possible to employ this marker in conjunction with other known predictors in order to anticipate the outcomes of treatment with antidepressant medications.
Collapse
Affiliation(s)
- Daniel M Kawaguchi
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry & Behavioral Sciences & Neuroscience & Physiology, Medical Genetics Research Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|
13
|
Fang L, Zhou C, Bai S, Huang C, Pan J, Wang L, Wang X, Mao Q, Sun L, Xie P. The C825T Polymorphism of the G-Protein β3 Gene as a Risk Factor for Depression: A Meta-Analysis. PLoS One 2015; 10:e0132274. [PMID: 26147511 PMCID: PMC4493085 DOI: 10.1371/journal.pone.0132274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/11/2015] [Indexed: 12/15/2022] Open
Abstract
Background TheG-protein β3 gene (GNβ3) has been implicated in psychiatric illness through its effects upon intracellular transduction of several neurotransmitter receptors. Multiple studies have investigated the relationship of the C825T polymorphism of the GNβ3 gene (GNβ3 C825T) to depression and antidepressant response. However, the relationship between GNβ3 C825T and depression remains inconsistent. Therefore, here we performed a meta-analysis to investigate the role of GNβ3 C825Tin depression risk. Methods Published case-control studies examining the association between GNβ3 C825T and depression were systematically searched for through several electronic databases (PubMed, Scopus, Science Direct, Springer, Embase, psyINFO, and CNKI). The association between GNβ3 C825T and depression risk were assessed by odd ratios (ORs) and their 95% confidence intervals (CIs) for each study. Pooled ORs were constructed for allele contrast (C versus T), homozygote (CC versus TT) model, heterozygote (CC versus CT) model, dominant model (CC + CT versus TT), and recessive (CC versus TT+CT) model. In order to evaluate possible biases, a sensitivity analysis was conducted by sequential deletion of individual studies in an attempt to assess the contribution of each individual dataset to the pooled OR. Results Nine studies, including 1055 depressed patients and 1325 healthy controls, were included. A significant association between GNβ3 C825Tand depression was found to exist, suggesting that the T-allele of GNβ3 C825Tcan increase susceptibility to depression. After stratification by ethnicity, the same association was found in the Asian subpopulation, but not the Caucasian subpopulation. Conclusions This is the first meta-analysis to reveal a relationship between GNβ3 C825T and depression. Asian T-allele carriers of GNβ3 C825T appear to be more susceptible to depression.
Collapse
Affiliation(s)
- Liang Fang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shunjie Bai
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Chenglong Huang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Junxi Pan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xinfa Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Qiang Mao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Lu Sun
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
14
|
Abstract
Several lines of evidence implicate abnormalities in glutamatergic neural transmission in major depressive disorder (MDD) and treatment response. A high percentage of MDD patients do not respond adequately to antidepressants and are classified as having treatment-resistant depression (TRD). In this study we investigated five GRIK4 variants, previously associated with antidepressants response, in an Italian cohort of 247 MDD no-TRD and 380 TRD patients. We found an association between rs11218030 G allele and TRD. Moreover, significant associations between rs11218030 and rs1954787 and the presence of psychotic symptoms were observed. In conclusion, our data support the involvement of GRIK4 in TRD and in the risk of developing psychotic symptoms during depressive episodes.
Collapse
|
15
|
Hu Q, Zhang SY, Liu F, Zhang XJ, Cui GC, Yu EQ, Xu XF, Li P, Xiao JQ, Wei DM, Zang YY. Influence of GNB3 C825T polymorphism on the efficacy of antidepressants in the treatment of major depressive disorder: A meta-analysis. J Affect Disord 2015; 172:103-9. [PMID: 25451402 DOI: 10.1016/j.jad.2014.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE We performed the present meta-analysis in order to evaluate the influence of a common polymorphism (C825T, rs5443 C>T) in the GNB3 gene on the efficacy of antidepressants in the treatment of major depressive disorder (MDD). METHOD A relevant literature was searched using the PubMed, Embase, Web of Science, Cochrane Library, CISCOM, CINAHL, Google Scholar, CBM and CNKI databases without any language restrictions. STATA Version 12.0 software (Stata Corporation, College Station, Texas USA) was used for this meta-analysis. Odds ratio (OR) and its corresponding 95% confidence interval (95% CI) were calculated. RESULTS Our findings suggested that the GNB3 C825T polymorphism was significantly correlated with a higher response rate to antidepressants in MDD patients under the allele and dominant models. Furthermore, we found significant associations between GNB3 C825T polymorphisms and antidepressant-induced remission in MDD patients. Ethnicity-stratified analysis indicated that GNB3 C825T polymorphisms may be strongly related to the efficacy of antidepressants in the treatment of MDD among Asians, but not in Caucasians (all P>0.05). CONCLUSION Our findings provide empirical evidence that GNB3 C825T polymorphisms may be correlated with the efficacy of antidepressants in the treatment of MDD, especially among Asians patients.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Psychology, Qiqihar Mental Health Center, Linhua Road No. 6, Jianhua District, Qiqihar 161000, China.
| | - Sheng-Yu Zhang
- Institute of Forensic Science, Ministry of Justice, P.R. China, Guangfu Road No. 1347, Shanghai 200030, China.
| | - Fei Liu
- Department of Psychiatry, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Xiao Jie Zhang
- Department of Pathology, Qiqihar Medical University, Qiqihar 161000, China
| | - Guang-Cheng Cui
- Mental Health Institute, Qiqihar Medical University, Qiqihar 161000, China
| | - En-Qing Yu
- Research Center, Qiqihar Mental Health Center, Qiqihar 161000, China
| | - Xian-Feng Xu
- Research Center, Qiqihar Mental Health Center, Qiqihar 161000, China
| | - Ping Li
- Mental Health Institute, Qiqihar Medical University, Qiqihar 161000, China
| | - Jian-Qi Xiao
- Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar 161000, China
| | - Dong-Mei Wei
- Department of Traditional Chinese Medicine, The First Hospital of Qiqihar City, Qiqihar 161000, China
| | - Yin-Yin Zang
- Center for the Treatment and Study of Anxiety, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Reynolds GP, McGowan OO, Dalton CF. Pharmacogenomics in psychiatry: the relevance of receptor and transporter polymorphisms. Br J Clin Pharmacol 2014; 77:654-72. [PMID: 24354796 DOI: 10.1111/bcp.12312] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/18/2013] [Indexed: 12/15/2022] Open
Abstract
The treatment of severe mental illness, and of psychiatric disorders in general, is limited in its efficacy and tolerability. There appear to be substantial interindividual differences in response to psychiatric drug treatments that are generally far greater than the differences between individual drugs; likewise, the occurrence of adverse effects also varies profoundly between individuals. These differences are thought to reflect, at least in part, genetic variability. The action of psychiatric drugs primarily involves effects on synaptic neurotransmission; the genes for neurotransmitter receptors and transporters have provided strong candidates in pharmacogenetic research in psychiatry. This paper reviews some aspects of the pharmacogenetics of neurotransmitter receptors and transporters in the treatment of psychiatric disorders. A focus on serotonin, catecholamines and amino acid transmitter systems reflects the direction of research efforts, while relevant results from some genome-wide association studies are also presented. There are many inconsistencies, particularly between candidate gene and genome-wide association studies. However, some consistency is seen in candidate gene studies supporting established pharmacological mechanisms of antipsychotic and antidepressant response with associations of functional genetic polymorphisms in, respectively, the dopamine D2 receptor and serotonin transporter and receptors. More recently identified effects of genes related to amino acid neurotransmission on the outcome of treatment of schizophrenia, bipolar illness or depression reflect the growing understanding of the roles of glutamate and γ-aminobutyric acid dysfunction in severe mental illness. A complete understanding of psychiatric pharmacogenomics will also need to take into account epigenetic factors, such as DNA methylation, that influence individual responses to drugs.
Collapse
Affiliation(s)
- Gavin P Reynolds
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | |
Collapse
|
17
|
O'Leary OF, O'Brien FE, O'Connor RM, Cryan JF. Drugs, genes and the blues: Pharmacogenetics of the antidepressant response from mouse to man. Pharmacol Biochem Behav 2014; 123:55-76. [PMID: 24161683 DOI: 10.1016/j.pbb.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/04/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
|
18
|
Breitenstein B, Scheuer S, Holsboer F. Are there meaningful biomarkers of treatment response for depression? Drug Discov Today 2014; 19:539-61. [PMID: 24561326 DOI: 10.1016/j.drudis.2014.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/29/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
During the past decades, the prevalence of affective disorders has been on the rise globally, with only one out of three patients achieving remission in acute treatment with antidepressants. The identification of physiological markers that predict treatment course proves useful in increasing therapeutic success. On the basis of well-documented, recent findings in depression research, we highlight and discuss the most promising biomarkers for antidepressant therapy response. These include genetic variants and gene expression profiles, proteomic and metabolomic markers, neuroendocrine function tests, electrophysiology and imaging techniques. Ultimately, this review proposes an integrative use of biomarkers for antidepressant treatment outcome.
Collapse
Affiliation(s)
- Barbara Breitenstein
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Florian Holsboer
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
19
|
Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:487-520. [PMID: 23852853 DOI: 10.1002/ajmg.b.32184] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is an emergent cause of personal and socio-economic burden, both for the high prevalence of the disorder and the unsatisfying response rate of the available antidepressant treatments. No reliable predictor of treatment efficacy and tolerance in the single patient is available, thus drug choice is based on a trial and error principle with poor clinical efficiency. Among modulators of treatment outcome, genetic polymorphisms are thought to explain a significant share of the inter-individual variability. The present review collected the main pharmacogenetic findings primarily about antidepressant response and secondly about antidepressant induced side effects, and discussed the main strengths and limits of both candidate and genome-wide association studies and the most promising methodological opportunities and challenges of the field. Despite clinical applications of antidepressant pharmacogenetics are not available yet, previous findings suggest that genotyping may be applied in the clinical practice. In order to reach this objective, further rigorous pharmacogenetic studies (adequate sample size, study of better defined clinical subtypes of MDD, adequate covering of the genetic variability), their combination with the results obtained through complementary methodologies (e.g., pathway analysis, epigenetics, transcriptomics, and proteomics), and finally cost-effectiveness trials are required.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
20
|
European Group for the Study of Resistant Depression (GSRD)--where have we gone so far: review of clinical and genetic findings. Eur Neuropsychopharmacol 2012; 22:453-68. [PMID: 22464339 DOI: 10.1016/j.euroneuro.2012.02.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/22/2012] [Indexed: 12/22/2022]
Abstract
The primary objective of this review is to give an overview of the main findings of the European multicenter project "Patterns of Treatment Resistance and Switching Strategies in Affective Disorder", performed by the Group for the Study of Resistant Depression (GSRD). The aim was to study methodological issues, operational criteria, clinical characteristics, and genetic variables associated with treatment resistant depression (TRD), that is failure to reach response after at least two consecutive adequate antidepressant trials. The primary findings of clinical variables associated with treatment resistance include comorbid anxiety disorders as well as non-response to the first antidepressant received lifetime. Although there is a plethora of hints in textbooks that switching the mechanism of action should be obtained in case of nonresponse to one medication, the results of the GSRD challenge this notion by demonstrating in retrospective and prospective evaluations that staying on the same antidepressant mechanism of action for a longer time is more beneficial than switching, however, when switching is an option there is no benefit to switch across class. The GSRD candidate gene studies found that metabolism status according to cytochrome P450 gene polymorphisms may not be helpful to predict response and remission rates to antidepressants. Significant associations with MDD and antidepressant treatment response were found for COMT SNPs. Investigating the impact of COMT on suicidal behaviour, we found a significant association with suicide risk in MDD patients not responding to antidepressant treatment, but not in responders. Further significant associations with treatment response phenotypes were found with BDNF, 5HTR2A and CREB1. Additional investigated candidate genes were DTNBP1, 5HT1A, PTGS2, GRIK4 and GNB3.
Collapse
|