1
|
Li SY, Xue RY, Wu H, Pu N, Wei D, Zhao N, Song ZM, Tao Y. Novel Role of Molecular Hydrogen: The End of Ophthalmic Diseases? Pharmaceuticals (Basel) 2023; 16:1567. [PMID: 38004433 PMCID: PMC10674431 DOI: 10.3390/ph16111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/26/2023] Open
Abstract
Molecular hydrogen (H2) is a colorless, odorless, and tasteless gas which displays non-toxic features at high concentrations. H2 can alleviate oxidative damage, reduce inflammatory reactions and inhibit apoptosis cascades, thereby inducing protective and repairing effects on cells. H2 can be transported into the body in the form of H2 gas, hydrogen-rich water (HRW), hydrogen-rich saline (HRS) or H2 produced by intestinal bacteria. Accumulating evidence suggest that H2 is protective against multiple ophthalmic diseases, including cataracts, dry eye disease, diabetic retinopathy (DR) and other fields. In particular, H2 has been tested in the treatment of dry eye disease and corneal endothelial injury in clinical practice. This medical gas has brought hope to patients suffering from blindness. Although H2 has demonstrated promising therapeutic potentials and broad application prospects, further large-scale studies involving more patients are still needed to determine its optimal application mode and dosage. In this paper, we have reviewed the basic characteristics of H2, and its therapeutic effects in ophthalmic diseases. We also focus on the latest progress in the administration approaches and mechanisms underlying these benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zong-Ming Song
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| |
Collapse
|
2
|
An Immunohistochemical Study of the Increase in Antioxidant Capacity of Corneal Epithelial Cells by Molecular Hydrogen, Leading to the Suppression of Alkali-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7435260. [PMID: 32655773 PMCID: PMC7327556 DOI: 10.1155/2020/7435260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 12/04/2022]
Abstract
Corneal alkali burns are potentially blinding injuries. Alkali induces oxidative stress in corneas followed by excessive corneal inflammation, neovascularization, and untransparent scar formation. Molecular hydrogen (H2), a potent reactive oxygen species (ROS) scavenger, suppresses oxidative stress and enables corneal healing when applied on the corneal surface. The purpose of this study was to examine whether the H2 pretreatment of healthy corneas evokes a protective effect against corneal alkali-induced oxidative stress. Rabbit eyes were pretreated with a H2 solution or buffer solution, by drops onto the ocular surface, and the corneas were then burned with 0.25 M NaOH. The results obtained with immunohistochemistry and pachymetry showed that in the corneas of H2-pretreated eyes, slight oxidative stress appeared followed by an increased expression of antioxidant enzymes. When these corneas were postburned with alkali, the alkali-induced oxidative stress was suppressed. This was in contrast to postburned buffer-pretreated corneas, where the oxidative stress was strong. These corneas healed with scar formation and neovascularization, whereas corneas of H2-pretreated eyes healed with restoration of transparency in the majority of cases. Corneal neovascularization was strongly suppressed. Our results suggest that the corneal alkali-induced oxidative stress was reduced via the increased antioxidant capacity of corneal cells against reactive oxygen species (ROS). It is further suggested that the ability of H2 to induce the increase in antioxidant cell capacity is important for eye protection against various diseases or external influences associated with ROS production.
Collapse
|
3
|
Cejka C, Kubinova S, Cejkova J. The preventive and therapeutic effects of molecular hydrogen in ocular diseases and injuries where oxidative stress is involved. Free Radic Res 2019; 53:237-247. [DOI: 10.1080/10715762.2019.1582770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cestmir Cejka
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Kubinova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Cejkova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Cejka C, Kossl J, Hermankova B, Holan V, Kubinova S, Zhang JH, Cejkova J. Therapeutic effect of molecular hydrogen in corneal UVB-induced oxidative stress and corneal photodamage. Sci Rep 2017; 7:18017. [PMID: 29269749 PMCID: PMC5740126 DOI: 10.1038/s41598-017-18334-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/08/2017] [Indexed: 01/27/2023] Open
Abstract
The aim of this study is to examine whether molecular hydrogen (H2) is able to reduce oxidative stress after corneal damage induced by UVB irradiation. We previously found that UVB irradiation of the cornea caused the imbalance between the antioxidant and prooxidant enzymes in the corneal epithelium, followed by the imbalance between metalloproteinases and their physiological inhibitors (imbalances in favour of prooxidants and metalloproteinases) contributing to oxidative stress and development of the intracorneal inflammation. Here we investigate the effect of H2 dissolved in PBS in the concentration 0.5 ppm wt/vol, applied on rabbit corneas during UVB irradiation and healing (UVB doses 1.01 J/cm2 once daily for four days). Some irradiated corneas remained untreated or buffer treated. In these corneas the oxidative stress appeared, followed by the excessive inflammation. Malondiladehyde and peroxynitrite expressions were present. The corneas healed with scar formation and neovascularization. In contrast, in H2 treated irradiated corneas oxidative stress was suppressed and malondiladehyde and peroxynitrite expressions were absent. The corneas healed with the restoration of transparency. The study provides the first evidence of the role of H2 in prevention of oxidative and nitrosative stress in UVB irradiated corneas, which may represent a novel prophylactic approach to corneal photodamage.
Collapse
Affiliation(s)
- Cestmir Cejka
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - Jan Kossl
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic.,Faculty of Natural Science, Charles University, Vinicna 7, 12843, Prague 2, Czech Republic
| | - Barbora Hermankova
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic.,Faculty of Natural Science, Charles University, Vinicna 7, 12843, Prague 2, Czech Republic
| | - Vladimir Holan
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic.,Faculty of Natural Science, Charles University, Vinicna 7, 12843, Prague 2, Czech Republic
| | - Sarka Kubinova
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - John H Zhang
- Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jitka Cejkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic.
| |
Collapse
|
5
|
Molecular Hydrogen Effectively Heals Alkali-Injured Cornea via Suppression of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8906027. [PMID: 28400915 PMCID: PMC5376456 DOI: 10.1155/2017/8906027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/10/2017] [Accepted: 02/26/2017] [Indexed: 12/20/2022]
Abstract
The aim of this study was to examine the effect of molecular hydrogen (H2) on the healing of alkali-injured cornea. The effects of the solution of H2 in phosphate buffered saline (PBS) or PBS alone topically applied on the alkali-injured rabbit cornea with 0.25 M NaOH were investigated using immunohistochemical and biochemical methods. Central corneal thickness taken as an index of corneal hydration was measured with an ultrasonic pachymeter. Results show that irrigation of the damaged eyes with H2 solution immediately after the injury and then within next five days renewed corneal transparency lost after the injury and reduced corneal hydration increased after the injury to physiological levels within ten days after the injury. In contrast, in injured corneas treated with PBS, the transparency of damaged corneas remained lost and corneal hydration elevated. Later results-on day 20 after the injury-showed that in alkali-injured corneas treated with H2 solution the expression of proinflammatory cytokines, peroxynitrite, detected by nitrotyrosine residues (NT), and malondialdehyde (MDA) expressions were very low or absent compared to PBS treated injured corneas, where NT and MDA expressions were present. In conclusion, H2 solution favorably influenced corneal healing after alkali injury via suppression of oxidative stress.
Collapse
|
6
|
Tao Y, Geng L, Xu WW, Qin LM, Peng GH, Huang YF. The potential utilizations of hydrogen as a promising therapeutic strategy against ocular diseases. Ther Clin Risk Manag 2016; 12:799-806. [PMID: 27279745 PMCID: PMC4878665 DOI: 10.2147/tcrm.s102518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hydrogen, one of the most well-known natural molecules, has been used in numerous medical applications owing to its ability to selectively neutralize cytotoxic reactive oxygen species and ameliorate hazardous inflammations. Hydrogen can exert protective effects on various reactive oxygen species-related diseases, including the transplantation-induced intestinal graft injury, chronic inflammation, ischemia–reperfusion injuries, and so on. Especially in the eye, hydrogen has been used to counteract multiple ocular pathologies in the ophthalmological models. Herein, the ophthalmological utilizations of hydrogen are systematically reviewed and the underlying mechanisms of hydrogen-induced beneficial effects are discussed. It is our hope that the protective effects of hydrogen, as evidenced by these pioneering studies, would enrich our pharmacological knowledge about this natural element and cast light into the discovery of a novel therapeutic strategy against ocular diseases.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| | - Lei Geng
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| | - Wei-Wei Xu
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| | - Li-Min Qin
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| | - Guang-Hua Peng
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| | - Yi-Fei Huang
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| |
Collapse
|
7
|
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5:12. [PMID: 26483953 PMCID: PMC4610055 DOI: 10.1186/s13618-015-0035-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023] Open
Abstract
Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4 % is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.
Collapse
Affiliation(s)
- Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Sayaka Sobue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015 Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673 Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| |
Collapse
|
8
|
Gu H, Yang M, Zhao X, Zhao B, Sun X, Gao X. Pretreatment with hydrogen-rich saline reduces the damage caused by glycerol-induced rhabdomyolysis and acute kidney injury in rats. J Surg Res 2013; 188:243-9. [PMID: 24495844 DOI: 10.1016/j.jss.2013.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/28/2013] [Accepted: 12/06/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rhabdomyolysis is a leading cause of acute kidney injury. The pathophysiological process involves oxidative stress and inflammation. Hydrogen-rich saline (HRS) is an antioxidant and anti-inflammatory. This study explored the protective effect of pretreatment with HRS on the development of glycerol-induced rhabdomyolysis acute kidney injury. MATERIALS AND METHODS Forty-eight rats were randomly divided into four equal groups. Group 1 served as the control, group 2 was given 50% glycerol (10 mL/kg, intramuscular), group 3 was given glycerol after 7 d pretreatment with high dose HRS (10 mL/kg/d, intraperitoneal), and group 4 was given glycerol after 7 d pretreatment with low dose HRS (5 mL/kg/d, intraperitoneal). Renal health was monitored by serum creatinine (Cr), urea, and histologic analysis; rhabdomyolysis was monitored by creatine kinase (CK) levels; and oxidative stress was monitored by kidney tissue reactive oxygen species (ROS), malondialdehyde, 8-hydroxydeoxyguanosine (8-OH-dG), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) levels. Inflammation was monitored by interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) evaluation. RESULTS Glycerol administration resulted in an increase in the mean histologic damage score, serum Cr, urea and CK, kidney tissue ROS, malondialdehyde, 8-OH-dG, GSH-PX, IL-6, and TNF-α, and a decrease in kidney tissue superoxide dismutase activity. All these factors were significantly improved by both doses of HRS, but the mean histologic damage score, urea, Cr, CK, ROS, 8-OH-dG, GSH-PX, IL-6, and TNF-α for the high dose HRS treatment group were even lower. CONCLUSIONS Pretreatment by HRS ameliorated renal dysfunction in glycerol-induced rhabdomyolysis by inhibiting oxidative stress and the inflammatory response.
Collapse
Affiliation(s)
- Hongxia Gu
- Department of Nephrology, No.88 Hospital of PLA, Taian, Shandong Province, China
| | - Min Yang
- Department of Nephrology, No.88 Hospital of PLA, Taian, Shandong Province, China
| | - Xiaomin Zhao
- Institution of Atherosclerosis, Taishan Medical University, Taian, Shandong Province, China
| | - Bing Zhao
- Institution of Atherosclerosis, Taishan Medical University, Taian, Shandong Province, China
| | - Xuejun Sun
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xin Gao
- Department of Nephrology, No.88 Hospital of PLA, Taian, Shandong Province, China.
| |
Collapse
|
9
|
He J, Xiong S, Zhang J, Wang J, Sun A, Mei X, Sun X, Zhang C, Wang Q. Protective effects of hydrogen-rich saline on ulcerative colitis rat model. J Surg Res 2013; 185:174-81. [PMID: 23773716 DOI: 10.1016/j.jss.2013.05.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/08/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is associated with enhanced production of reactive oxygen species and altered angiogenesis. Molecular hydrogen has been documented as a novel antioxidant to treat various reactive oxygen species-related diseases. The present study aimed to investigate the effects of hydrogen on UC using a rat model. MATERIALS AND METHODS UC in rats was induced with intracolonically administrated acetic acid. Hydrogen was supplied through intraperitoneal injection of 10 or 20 mL/kg hydrogen-rich saline. The hydrogen treatment was performed once every 2 d and lasted 2 wk. The stool consistency and weight loss were used to evaluate UC development. Colonic mucosal damage at the end of the experiment was scored using the macroscopic and microscopic observations. Vascular endothelial growth factor expression in the colonic mucosa was determined using immunohistochemistry. RESULTS The administration of acetic acid induced acute rat UC, as indicated by diarrhea, weight loss, and colonic mucosal damage. Treatment with hydrogen-rich saline reduced the weight loss and diarrhea and alleviated the colonic mucosal damage in the UC rats. In addition, the expression of vascular endothelial growth factor in the UC rats increased and could be inhibited by hydrogen treatment. CONCLUSIONS Antioxidative hydrogen-rich saline effectively protected the rats from UC, which might be, at least in part, because of inhibition of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Jinghu He
- Department of Anatomy, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|