1
|
Shao Y, Yang S, Cheng L, Duan J, Li J, Kang J, Wang F, Liu J, Zheng F, Ma J, Zhang Y. Identification of chromosomal abnormalities in miscarriages by CNV-Seq. Mol Cytogenet 2024; 17:4. [PMID: 38369498 PMCID: PMC10875874 DOI: 10.1186/s13039-024-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
OBJECTIVE The primary object of this study is to analyze chromosomal abnormalities in miscarriages detected by copy number variants sequencing (CNV-Seq), establish potential pathways or genes related to miscarriages, and provide guidance for birth health in the following pregnancies. METHODS This study enrolled 580 miscarriage cases with paired clinical information and chromosomal detection results analyzed by CNV-Seq. Further bioinformatic analyses were performed on validated pathogenic CNVs (pCNVs). RESULTS Of 580 miscarriage cases, three were excluded as maternal cell contamination, 357 cases showed abnormal chromosomal results, and the remaining 220 were normal, with a positive detection rate of 61.87% (357/577). In the 357 miscarriage cases, 470 variants were discovered, of which 65.32% (307/470) were pathogenic. Among all variants detected, 251 were numerical chromosomal abnormalities, and 219 were structural abnormalities. With advanced maternal age, the proportion of numerical abnormalities increased, but the proportion of structural abnormalities decreased. Kyoto Encyclopedia of Genes and Genomes pathway and gene ontology analysis revealed that eleven pathways and 636 biological processes were enriched in pCNVs region genes. Protein-protein interaction analysis of 226 dosage-sensitive genes showed that TP53, CTNNB1, UBE3A, EP300, SOX2, ATM, and MECP2 might be significant in the development of miscarriages. CONCLUSION Our study provides evidence that chromosomal abnormalities contribute to miscarriages, and emphasizes the significance of microdeletions or duplications in causing miscarriages apart from numerical abnormalities. Essential genes found in pCNVs regions may account for miscarriages which need further validation.
Collapse
Affiliation(s)
- Yuqi Shao
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, China
| | - Saisai Yang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, China
| | - Lin Cheng
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, China
| | - Jie Duan
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, China
| | - Jin Li
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiawei Kang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, China
| | - Fang Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, China
| | - Juan Liu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, China
| | - Fang Zheng
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jianhong Ma
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, China.
| |
Collapse
|
2
|
Xue H, Guo Q, Yu A, Lin M, Chen X, Xu L. Genetic analysis of chorionic villus tissues in early missed abortions. Sci Rep 2023; 13:21719. [PMID: 38081877 PMCID: PMC10713591 DOI: 10.1038/s41598-023-48358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Chromosomal abnormalities are the most common etiology of early spontaneous miscarriage. However, traditional karyotyping of chorionic villus samples (CVSs) is limited by cell culture and its low resolution. The objective of our study was to investigate the efficiency of molecular karyotyping technology for genetic diagnosis of early missed abortion tissues. Chromosome analysis of 1191 abortion CVSs in early pregnancy was conducted from August 2016 to June 2021; 463 cases were conducted via copy-number variations sequencing (CNV-seq)/quantitative fluorescent-polymerase chain reaction (QF-PCR) and 728 cases were conducted using SNP array. Clinically significant CNVs of CVSs were identified to clarify the cause of miscarriage and to guide the couples' subsequent pregnancies. Among these, 31 cases with significant maternal cell contamination were removed from the study. Among the remaining 1160 samples, 751 cases (64.7%) with genetic abnormalities were identified, of which, 531 (45.8%) were single aneuploidies, 31 (2.7%) were multiple aneuploidies, 50 (4.3%) were polyploidies, 54 (4.7%) were partial aneuploidies, 77 (6.6%) had submicroscopic CNVs (including 25 with clinically significant CNVs and 52 had variants of uncertain significance), and 8 cases (0.7%) were uniparental disomies. Our study suggests that both SNP array and CNV-seq/QF-PCR are reliable, robust, and high-resolution technologies for genetic diagnosis of miscarriage.
Collapse
Affiliation(s)
- Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| | - Qun Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Aili Yu
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Min Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
3
|
Chromosomal Copy Number Variation Analysis in Pregnancy Products from Recurrent and Sporadic Miscarriage Using Next-Generation Sequencing. Reprod Sci 2022; 29:2927-2936. [PMID: 35578104 DOI: 10.1007/s43032-022-00969-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
Chromosomal abnormality is one of the causes of fetal miscarriage. The potential differences of fetal chromosomal abnormalities in sporadic miscarriage (SM) and recurrent miscarriage (RM) remain unclear. The purpose of this study was to investigate copy number variations (CNVs) in SM and RM to provide useful genetic guidance for pregnancy and prenatal diagnosis. Four hundred eight samples of aborted fetuses were analyzed by CNV sequencing, and further functional enrichment analysis was performed. Chromosomal abnormalities were identified in 218 (53.4%) fetuses. There were 62 cases (15.2%) with structural chromosomal abnormalities, including 41 with VUS CNVs, 8 with pathogenic CNVs (pCNVs), and 5 with likely pCNVs. Duplications or deletions of 7p22, 8p22, 8p23, and Xp22.31 were significantly more common in RM cases and therefore believed to be related to RM. A total of 289 genes were identified, and 29 different functions were enriched as potential RM candidate genes and functions, which were mainly concentrated in 4 functional categories: chemokines and chemotaxis, protease activity and protein modification, defense response to bacterial and fungal infections, and immune response. The results of this study may improve our understanding of the etiology of RM and contribute to the establishment of a population-based genetic marker information for RM.
Collapse
|
4
|
Wu H, Huang Q, Zhang X, Yu Z, Zhong Z. Analysis of Genomic Copy Number Variation in Miscarriages During Early and Middle Pregnancy. Front Genet 2021; 12:732419. [PMID: 34603391 PMCID: PMC8484914 DOI: 10.3389/fgene.2021.732419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to explore the copy number variations (CNVs) associated with miscarriage during early and middle pregnancy and provide useful genetic guidance for pregnancy and prenatal diagnosis. A total of 505 fetal specimens were collected and CNV sequencing (CNV-seq) analysis was performed to determine the types and clinical significance of CNVs, and relevant medical records were collected. The chromosomal abnormality rate was 54.3% (274/505), among which the numerical chromosomal abnormality rate was 40.0% (202/505) and structural chromosomal abnormality rate was 14.3% (72/505). Chromosomal monosomy mainly occurred on sex chromosomes, and chromosomal trisomy mainly occurred on chromosomes 16, 22, 21, 15, 13, and 9. The incidence of numerical chromosomal abnormalities in ≥35 year-old age pregnant women was significantly higher than <35 year-old age group. The highest incidence of pathogenic CNV (pCNV) was found in fetuses at ≤6 weeks of pregnancy (5.26%), and the incidence of variants of unknown significance (VOUS) CNVs decreased gradually with the increase of gestational age. The rate of chromosomal abnormalities of fetuses in early pregnancy (59.5%) was higher than that of fetuses in middle pregnancy (27.2%) (p < 0.001). There were 168 genes in VOUS + pCNV regions. 41 functions and 12 pathways (p < 0.05) were enriched of these genes by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Some meaningful genetic etiology information such as genes and pathways has been obtained, it may provide useful genetic guidance for pregnancy and prenatal diagnosis.
Collapse
Affiliation(s)
- Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Qingyan Huang
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Xia Zhang
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Center for Prenatal Diagnosis, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhikang Yu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhixiong Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
5
|
Daughtry BL, Chavez SL. Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res 2016; 363:201-225. [PMID: 26590822 PMCID: PMC5621482 DOI: 10.1007/s00441-015-2305-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023]
Abstract
Formation of a totipotent blastocyst capable of implantation is one of the first major milestones in early mammalian embryogenesis, but less than half of in vitro fertilized embryos from most mammals will progress to this stage of development. Whole chromosomal abnormalities, or aneuploidy, are key determinants of whether human embryos will arrest or reach the blastocyst stage. Depending on the type of chromosomal abnormality, however, certain embryos still form blastocysts and may be morphologically indistinguishable from chromosomally normal embryos. Despite the implementation of pre-implantation genetic screening and other advanced in vitro fertilization (IVF) techniques, the identification of aneuploid embryos remains complicated by high rates of mosaicism, atypical cell division, cellular fragmentation, sub-chromosomal instability, and micro-/multi-nucleation. Moreover, several of these processes occur in vivo following natural human conception, suggesting that they are not simply a consequence of culture conditions. Recent technological achievements in genetic, epigenetic, chromosomal, and non-invasive imaging have provided additional embryo assessment approaches, particularly at the single-cell level, and clinical trials investigating their efficacy are continuing to emerge. In this review, we summarize the potential mechanisms by which aneuploidy may arise, the various detection methods, and the technical advances (such as time-lapse imaging, "-omic" profiling, and next-generation sequencing) that have assisted in obtaining this data. We also discuss the possibility of aneuploidy resolution in embryos via various corrective mechanisms, including multi-polar divisions, fragment resorption, endoreduplication, and blastomere exclusion, and conclude by examining the potential implications of these findings for IVF success and human fecundity.
Collapse
Affiliation(s)
- Brittany L Daughtry
- Department of Cell, Developmental & Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, Ore., USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
- Physiology & Pharmacology, Oregon Health & Science University School of Medicine, Portland, Ore., USA.
- Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Ore., USA.
| |
Collapse
|
6
|
Carbone L, Chavez SL. Mammalian pre-implantation chromosomal instability: species comparison, evolutionary considerations, and pathological correlations. Syst Biol Reprod Med 2015; 61:321-35. [PMID: 26366555 DOI: 10.3109/19396368.2015.1073406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pre-implantation embryo development in mammals begins at fertilization with the migration and fusion of the maternal and paternal pro-nuclei, followed by the degradation of inherited factors involved in germ cell specification and the activation of embryonic genes required for subsequent cell divisions, compaction, and blastulation. The majority of studies on early embryogenesis have been conducted in the mouse or non-mammalian species, often requiring extrapolation of the findings to human development. Given both conserved similarities and species-specific differences, however, even comparison between closely related mammalian species may be challenging as certain aspects, including susceptibility to chromosomal aberrations, varies considerably across mammals. Moreover, most human embryo studies are limited to patient samples obtained from in vitro fertilization (IVF) clinics and donated for research, which are generally of poorer quality and produced with germ cells that may be sub-optimal. Recent technical advances in genetic, epigenetic, chromosomal, and time-lapse imaging analyses of high quality whole human embryos have greatly improved our understanding of early human embryogenesis, particularly at the single embryo and cell level. This review summarizes the major characteristics of mammalian pre-implantation development from a chromosomal perspective, in addition to discussing the technological achievements that have recently been developed to obtain this data. We also discuss potential translation to clinical applications in reproductive medicine and conclude by examining the broader implications of these findings for the evolution of mammalian species and cancer pathology in somatic cells.
Collapse
Affiliation(s)
- Lucia Carbone
- a Division of Neuroscience , Oregon National Primate Research Center .,b Department of Behavioral Neuroscience .,c Department of Molecular & Medical Genetics .,d Bioinformatics & Computational Biology, Oregon Health & Science University
| | - Shawn L Chavez
- e Division of Reproductive & Developmental Sciences , Oregon National Primate Research Center .,f Department of Obstetrics & Gynecology , and.,g Department of Physiology & Pharmacology , Oregon Health & Science University , Portland , Oregon , USA
| |
Collapse
|
7
|
Comprehensive preimplantation genetic screening and sperm deoxyribonucleic acid fragmentation from three males carrying balanced chromosome rearrangements. Fertil Steril 2015; 104:681-7.e2. [DOI: 10.1016/j.fertnstert.2015.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
8
|
Zakharova EE, Zaletova VV, Krivokharchenko AS. Biopsy of human morula-stage embryos: outcome of 215 IVF/ICSI cycles with PGS. PLoS One 2014; 9:e106433. [PMID: 25191937 PMCID: PMC4156362 DOI: 10.1371/journal.pone.0106433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/29/2014] [Indexed: 12/28/2022] Open
Abstract
Preimplantation genetic diagnosis (PGD) is commonly performed on biopsies from 6-8-cell-stage embryos or blastocyst trophectoderm obtained on day 3 or 5, respectively. Day 4 human embryos at the morula stage were successfully biopsied. Biopsy was performed on 709 morulae from 215 ICSI cycles with preimplantation genetic screening (PGS), and 3-7 cells were obtained from each embryo. The most common vital aneuploidies (chromosomes X/Y, 21) were screened by fluorescence in situ hybridization (FISH). No aneuploidy was observed in 72.7% of embryos, 91% of those developed to blastocysts. Embryos were transferred on days 5-6. Clinical pregnancy was obtained in 32.8% of cases, and 60 babies were born. Patients who underwent ICSI/PGS treatment were compared with those who underwent standard ICSI treatment by examining the percentage of blastocysts, pregnancy rate, gestational length, birth height and weight. No significant differences in these parameters were observed between the groups. Day 4 biopsy procedure does not adversely affect embryo development in vitro or in vivo. The increased number of cells obtained by biopsy of morulae might facilitate diagnostic screening. There is enough time after biopsy to obtain PGD results for embryo transfer on day 5-6 in the current IVF cycle.
Collapse
Affiliation(s)
- Elena E. Zakharova
- Center for Reproductive Medicine MAMA, Moscow, Russian Federation
- * E-mail:
| | | | | |
Collapse
|
9
|
Zheng YM, Li L, Zhou LM, Le F, Cai LY, Yu P, Zhu YR, Liu XZ, Wang LY, Li LJ, Lou YY, Xu XR, Lou HY, Zhu XM, Sheng JZ, Huang HF, Jin F. Alterations in the frequency of trinucleotide repeat dynamic mutations in offspring conceived through assisted reproductive technology. Hum Reprod 2013; 28:2570-80. [PMID: 23861482 DOI: 10.1093/humrep/det294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION How does the frequency of trinucleotide repeat dynamic mutations in offspring conceived through assisted reproductive technology (ART) compare with the frequency of these mutations in control offspring conceived from spontaneous pregnancies? SUMMARY ANSWER There is a slight increase in dynamic mutation instability in offspring conceived through ART compared with the naturally conceived offspring. WHAT IS KNOWN ALREADY There is evidence to suggest that ART can increase the risk of birth defects and karyotypic abnormalities. However, the accumulating evidence of an association between ART and de novo genetic aberrations is controversial. STUDY DESIGN, SIZE, DURATION A prospective clinical observational study was performed on 246 families recruited from an in vitro fertilisation (IVF) centre at a tertiary-care, university-affiliated teaching hospital from 2008 to 2012. The study included 147 ART families [75 IVF and 72 intracytoplasmic sperm injection (ICSI)] in the study group and 99 natural-conception families in the control group. PARTICIPANTS, SETTING, METHODS Parental, umbilical cord and infant peripheral blood samples were collected, and the trinucleotide repeats of the ATN1, AR, ATXN1, ATXN3, Huntington, DMPK and FMR-1 genes were investigated between the generations; these genes were chosen due to their ability to undergo dynamic mutation. The frequencies and sizes of the mutational repeats, as well as the intergenerational instability, were measured. MAIN RESULTS AND THE ROLE OF CHANCE In 2466 transmissions identified in the ART offspring, 2.11% (n = 52/2466) of the alleles were unstable upon transmission, while in the control group offspring, the frequency of dynamic mutation was 0.77% (n = 10/1300); this difference was statistically significant (P < 0.01). The unstable transmission alleles were detected in 32 (2.48%) of the 1288 alleles from the IVF offspring and in 20 (1.70%) of the 1178 alleles from the ICSI offspring; both of these frequencies were significantly different from that of naturally conceived offspring (0.77%) (P < 0.01 and P < 0.05, respectively). However, there were no significant differences in the sizes of the mutational repeats or in the rates of expansion or contraction among the three groups (P > 0.05). The repeat copy numbers of the examined genes were found to be within the normal ranges in all parents and infants. LIMITATIONS, REASONS FOR CAUTION One strength of our study is the relatively large sample size; we were able to detect mutations in seven common dynamic genes, and this large sample size allowed us to detect unstable alleles. Although we observed a clear alteration in the frequency of dynamic mutation in the ART offspring compared with controls, further studies are urgently needed to confirm this observation and determine the cause of this phenomenon. WIDER IMPLICATIONS OF THE FINDINGS DNA microsatellite analysis provides an important tool to assess genomic instability. In this study, we report an association between ART and the frequency of dynamic mutation. The instability could be a reflection of the core infertility problem, the controlled ovarian hyperstimulation and/or the in vitro culture conditions.
Collapse
Affiliation(s)
- Ying-Ming Zheng
- Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Benkhalifa M, Montjean D, Hatem B. [Preimplantation genetic diagnosis embryo screening before intra-uterine transfer is useful]. GYNECOLOGIE, OBSTETRIQUE & FERTILITE 2012; 40:449-51. [PMID: 22749672 DOI: 10.1016/j.gyobfe.2012.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- M Benkhalifa
- ATL R&D, Reproductive Biology & Genetics, 4 rue Louis-Lormand, La Verrière, France.
| | | | | |
Collapse
|