1
|
Xu P, Gao QL, Wang YJ, Guo CF, Tang MX, Liu SH, Deng A, Wang YX, Li YB, Zhang HQ. rs6127698 polymorphism in the MC3R gene and susceptibility to multifocal tuberculosis in southern Chinese Han population. INFECTION GENETICS AND EVOLUTION 2020; 82:104292. [PMID: 32240798 DOI: 10.1016/j.meegid.2020.104292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/15/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the relationship between melanocortin-3 receptor (MC3R) gene polymorphism and tuberculosis (TB) susceptibility in Han population in southern China. METHODS A total of 341 patients with TB (173 with pulmonary TB and 168 with multifocal TB) and 359 healthy controls were enrolled. Genotyping was performed by PCR and DNA sequencing, and detection of protein was performed by western blot. RESULTS The distributions of genotype and allele frequencies of rs6127698 differed significantly between the pulmonary and multifocal TB groups, and between the multifocal TB and control groups. The GG genotype was significantly more common among multifocal TB patients than among pulmonary TB patients (P = .009) and those in the control group (P = .001) under the recessive model. GG+GT genotype was more common in multifocal TB than in pulmonary TB (P < .01) and control group (P < .01) under the dominant model. G allele was more common in multifocal TB than in pulmonary TB (P < .0167) and control group (P < .0167). Patients with multifocal TB had an increased expression of MC3R protein than healthy controls (P < .05). CONCLUSIONS In the southern Chinese Han population, the MC3R rs6127698 polymorphism, which accompanying an increased expression of MC3R protein,was associated with susceptibility to multifocal TB. Presence of the G allele increased the risk of developing multifocal TB.
Collapse
Affiliation(s)
- Peng Xu
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Qi-le Gao
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yun-Jia Wang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.
| | - Chao-Feng Guo
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Ming-Xing Tang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shao-Hua Liu
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Ang Deng
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yu-Xiang Wang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yan-Bing Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hong-Qi Zhang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
2
|
Glanzmann B, Möller M, le Roex N, Tromp G, Hoal EG, van Helden PD. The complete genome sequence of the African buffalo (Syncerus caffer). BMC Genomics 2016; 17:1001. [PMID: 27927182 PMCID: PMC5142436 DOI: 10.1186/s12864-016-3364-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 12/02/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The African buffalo (Syncerus caffer) is an important role player in the savannah ecosystem. It has become a species of relevance because of its role as a wildlife maintenance host for an array of infectious and zoonotic diseases some of which include corridor disease, foot-and-mouth disease and bovine tuberculosis. To date, no complete genome sequence for S. caffer had been available for study and the genomes of other species such as the domestic cow (Bos taurus) had been used as a proxy for any genetics analysis conducted on this species. Here, the high coverage genome sequence of the African buffalo (S. caffer) is presented. RESULTS A total of 19,765 genes were predicted and 19,296 genes could be successfully annotated to S. caffer while 469 genes remained unannotated. Moreover, in order to extend a detailed annotation of S. caffer, gene clusters were constructed using twelve additional mammalian genomes. The S. caffer genome contains 10,988 gene clusters, of which 62 are shared exclusively between B. taurus and S. caffer. CONCLUSIONS This study provides a unique genomic perspective for the S. caffer, allowing for the identification of novel variants that may play a role in the natural history and physiological adaptations.
Collapse
Affiliation(s)
- Brigitte Glanzmann
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nikki le Roex
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
3
|
Three novel SNPs in the coding region of the bovine MC3R gene and their associations with growth traits. Biochem Genet 2013; 52:116-24. [PMID: 24233436 DOI: 10.1007/s10528-013-9632-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/23/2013] [Indexed: 12/30/2022]
Abstract
The involvement of melanocortin-3 receptor (MC3R) is well recognized in the regulation of feeding efficiency, body weight, and energy homeostasis. The objective of this study was to investigate the associations between MC3R gene polymorphisms and growth traits. Three novel SNPs (c.24C→T, c.220T→A, c.734G→C) and five haplotypes were identified in 234 Xiangxi cattle. The associations between MC3R gene polymorphisms and growth traits indicated that the individuals with TT and AT genotypes maintained higher body weight than those with the AA genotype at the c.220T→A locus (P < 0.05). The animals with GG and CG genotypes had higher heart girth and body weight than those with the CC genotype at c.734G→C (P < 0.05). The animals with H3H3 and H2H3 haplotype combinations had higher body weight than those with other haplotype combinations (P < 0.05). The results suggest that these SNPs in the MC3R gene might be useful genetic markers for marker-assisted selection and cattle breeding.
Collapse
|