1
|
Kudryavtseva N, Ermolaev A, Karlov G, Kirov I, Shigyo M, Sato S, Khrustaleva L. A Dual-Color Tyr-FISH Method for Visualizing Genes/Markers on Plant Chromosomes to Create Integrated Genetic and Cytogenetic Maps. Int J Mol Sci 2021; 22:5860. [PMID: 34070753 PMCID: PMC8215642 DOI: 10.3390/ijms22115860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
In situ imaging of molecular markers on a physical chromosome is an indispensable tool for refining genetic maps and validation genome assembly at the chromosomal level. Despite the tremendous progress in genome sequencing, the plant genome assembly at the chromosome level remains a challenge. Recently developed optical and Hi-C mapping are aimed at assistance in genome assembly. For high confidence in the genome assembly at chromosome level, more independent approaches are required. The present study is aimed at refining an ultrasensitive Tyr-FISH technique and developing a reliable and simple method of in situ mapping of a short unique DNA sequences on plant chromosomes. We have carefully analyzed the critical steps of the Tyr-FISH to find out the reasons behind the flaws of this technique. The accurate visualization of markers/genes appeared to be significantly dependent on the means of chromosome slide preparation, probe design and labeling, and high stringency washing. Appropriate adjustment of these steps allowed us to detect a short DNA sequence of 1.6 Kb with a frequency of 51.6%. Based on our results, we developed a more reliable and simple protocol for dual-color Tyr-FISH visualization of unique short DNA sequences on plant chromosomes. This new protocol can allow for more accurate determination of the physical distance between markers and can be applied for faster integration of genetic and cytogenetic maps.
Collapse
Affiliation(s)
- Natalya Kudryavtseva
- Laboratory of Plant Cell Engineering, All-Russian Research Institute of Agricultural Biotechnology, Timiryazevskay 42 Str., 127550 Moscow, Russia;
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia;
| | - Aleksey Ermolaev
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia;
| | - Gennady Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
| | - Ilya Kirov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
- Kurchatov Genomics Center of ARRIAB, All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Masayoshi Shigyo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan;
| | - Shusei Sato
- Graduate School of Life Science, Tohoku University, Miyagi 980-8577, Japan;
| | - Ludmila Khrustaleva
- Laboratory of Plant Cell Engineering, All-Russian Research Institute of Agricultural Biotechnology, Timiryazevskay 42 Str., 127550 Moscow, Russia;
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia;
- Department of Botany, Breeding and Seed Production of Garden Plants, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskay 49 Str., 127550 Moscow, Russia
| |
Collapse
|
2
|
Bačovský V, Hobza R, Vyskot B. Technical Review: Cytogenetic Tools for Studying Mitotic Chromosomes. Methods Mol Biol 2018; 1675:509-535. [PMID: 29052211 DOI: 10.1007/978-1-4939-7318-7_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Significant advances in chromosome preparation and other techniques have greatly increased the potential of plant cytogenetics in recent years. Increase in longitudinal resolution using DNA extended fibers as well as new developments in imaging and signal amplification technologies have enhanced the ability of FISH to detect small gene targets. The combination of fluorescence in situ hybridization with immunocytochemistry allows the investigation of cell events, chromosomal rearrangements and chromatin features typical for plant nuclei. Chromosome manipulation techniques using microdissection and flow sorting have accelerated the analysis of complex plant genomes. Together, the different cytogenetic approaches are invaluable for the unravelling of detailed structures of plant chromosomes, which are of utmost importance for the study of genome properties, DNA replication and gene regulation. In this technical review, different cytogenetic approaches are discussed for the analysis of plant chromosomes, with a focus on mitotic chromosomes.
Collapse
Affiliation(s)
- Václaclav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
3
|
Abstract
Tyramide signal amplification (TSA) fluorescence in situ hybridization (FISH) has been shown as a valuable molecular tool for visualizing specific amplified DNA sequences in chromosome preparations. This chapter describes how to perform TSA-FISH, paying special interest to its two critical steps: probe generation and metaphase plate generation. The potential of physically mapping 12S-globulin sequences by TSA-FISH as a means of identifying homeology among chromosome regions of Avena species was tested and is discussed.
Collapse
|
4
|
Fominaya A, Loarce Y, Montes A, Ferrer E. Chromosomal distribution patterns of the (AC) 10 microsatellite and other repetitive sequences, and their use in chromosome rearrangement analysis of species of the genus Avena. Genome 2016; 60:216-227. [PMID: 28156137 DOI: 10.1139/gen-2016-0146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence in situ hybridization (FISH) was used to determine the physical location of the (AC)10 microsatellite in metaphase chromosomes of six diploid species (AA or CC genomes), two tetraploid species (AACC genome), and five cultivars of two hexaploid species (AACCDD genome) of the genus Avena, a genus in which genomic relationships remain obscure. A preferential distribution of the (AC)10 microsatellite in the pericentromeric and interstitial regions was seen in both the A- and D-genome chromosomes, while in C-genome chromosomes the majority of signals were located in the pericentromeric heterochromatic regions. New large chromosome rearrangements were detected in two polyploid species: an intergenomic translocation involving chromosomes 17AL and 21DS in Avena sativa 'Araceli' and another involving chromosomes 4CL and 21DS in the analyzed cultivars of Avena byzantina. The latter 4CL-21DS intergenomic translocation differentiates clearly between A. sativa and A. byzantina. Searches for common hybridization patterns on the chromosomes of different species revealed chromosome 10A of Avena magna and 21D of hexaploid oats to be very similar in terms of the distribution of 45S and Am1 sequences. This suggests a common origin for these chromosomes and supports a CCDD rather than an AACC genomic designation for this species.
Collapse
Affiliation(s)
- Araceli Fominaya
- Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain.,Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain
| | - Yolanda Loarce
- Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain.,Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain
| | - Alexander Montes
- Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain.,Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain
| | - Esther Ferrer
- Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain.,Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
5
|
Khrustaleva L, Jiang J, Havey MJ. High-resolution tyramide-FISH mapping of markers tightly linked to the male-fertility restoration (Ms) locus of onion. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:535-545. [PMID: 26704420 DOI: 10.1007/s00122-015-2646-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Tyramide FISH was used to locate relatively small genomic amplicons from molecular markers linked to Ms locus onto onion chromosome 2 near the centromere, a region of relatively low recombination. Fluorescence in situ hybridization (FISH) has not been readily exploited for physical mapping of molecular markers in plants due to the technical challenge of visualizing small single-copy probes. Signal amplification using tyramide (tyr) FISH can increase sensitivity up to 100-fold. We used tyr-FISH to physically locate molecular markers tightly linked to the nuclear male-fertility (Ms) restoration locus of onion onto mitotic metaphase, pachytene, and super-stretched pachytene chromosomes. Relatively short genomic amplicons (846-2251 bp) and a cDNA clone (666 bp) were visualized in 9-42 % of observed cells. The markers were assigned to proximal locations close to the centromere on the long arm of chromosome 2, a region of lower recombination, revealing that tightly linked markers may be physically distant from Ms. This result explains why several labs have identified molecular markers tightly linked to the Ms locus after screening relatively few DNA clones or primers and segregating progenies. Although these markers are still useful for marker-aided selection, our results indicate that map-based cloning of Ms will likely be difficult due to reduced recombination near this gene.
Collapse
Affiliation(s)
- Ludmila Khrustaleva
- Center of Molecular Biotechnology, Department of Genetics and Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, 49, Timiryazevskaya Str., 127550, Moscow, Russia.
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin, Madison, WI, 53706, USA
| | - Michael J Havey
- USDA-ARS and Department of Horticulture, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
6
|
Yakovin NA, Divashuk MG, Razumova OV, Soloviev AA, Karlov GI. Use of laser microdissection for the construction of Humulusjaponicus Siebold et Zuccarini, 1846 (Cannabaceae) sex chromosome-specific DNA library and cytogenetics analysis. COMPARATIVE CYTOGENETICS 2014; 8:323-36. [PMID: 25610546 PMCID: PMC4296719 DOI: 10.3897/compcytogen.v8i4.8473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
Dioecy is relatively rare among plant species, and distinguishable sex chromosomes have been reported in few dioecious species. The multiple sex chromosome system (XX/XY1Y2) of Humulusjaponicus Siebold et Zuccarini, 1846 differs from that of other members of the family Cannabaceae, in which the XX/XY chromosome system is present. Sex chromosomes of Humulusjaponicus were isolated from meiotic chromosome spreads of males by laser microdissection with the P.A.L.M. MicroLaser system. The chromosomal DNA was directly amplified by degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR). Fast fluorescence in situ hybridization (FAST-FISH) using a labeled, chromosome-specific DOP-PCR product as a probe showed preferential hybridization to sex chromosomes. In addition, the DOP-PCR product was used to construct a short-insert, Humulusjaponicus sex chromosomes-specific DNA library. The randomly sequenced clones showed that about 12% of them have significant homology to Humuluslupulus and 88% to Cannabissativa Linnaeus, 1753 sequences from GenBank database. Forty-four percent of the sequences show homology to plant retroelements. It was concluded that laser microdissection is a useful tool for isolating the DNA of sex chromosomes of Humulusjaponicus and for the construction of chromosome-specific DNA libraries for the study of the structure and evolution of sex chromosomes. The results provide the potential for identifying unique or sex chromosome-specific sequence elements in Humulusjaponicus and could aid in the identification of sex chromosome-specific repeat and coding regions through chromosome isolation and genome complexity reduction.
Collapse
Affiliation(s)
- Nickolay A. Yakovin
- Centre for Molecular Biotechnology, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow 127550, Timiryazevskaya street, 49, Russia
| | - Mikhail G. Divashuk
- Centre for Molecular Biotechnology, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow 127550, Timiryazevskaya street, 49, Russia
| | - Olga V. Razumova
- Centre for Molecular Biotechnology, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow 127550, Timiryazevskaya street, 49, Russia
| | - Alexander A. Soloviev
- Departament of Genetics, Biotechnology and Plant Breeding, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
| | - Gennady I. Karlov
- Centre for Molecular Biotechnology, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow 127550, Timiryazevskaya street, 49, Russia
| |
Collapse
|
7
|
Kirov I, Van Laere K, De Riek J, De Keyser E, Van Roy N, Khrustaleva L. Anchoring linkage groups of the Rosa genetic map to physical chromosomes with tyramide-FISH and EST-SNP markers. PLoS One 2014; 9:e95793. [PMID: 24755945 PMCID: PMC3995938 DOI: 10.1371/journal.pone.0095793] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/31/2014] [Indexed: 11/29/2022] Open
Abstract
In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb–1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria.
Collapse
Affiliation(s)
- Ilya Kirov
- Center of Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Genetics and Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
| | - Katrijn Van Laere
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
- * E-mail:
| | - Jan De Riek
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
| | - Ellen De Keyser
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
| | - Nadine Van Roy
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ludmila Khrustaleva
- Center of Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Genetics and Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| |
Collapse
|
8
|
Sanz MJ, Loarce Y, Fominaya A, Vossen JH, Ferrer E. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:203-218. [PMID: 22948438 DOI: 10.1007/s00122-012-1974-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
Two of the domains most widely shared among R genes are the nucleotide binding site (NBS) and protein kinase (PK) domains. The present study describes and maps a number of new oat resistance gene analogues (RGAs) with two purposes in mind: (1) to identify genetic regions that contain R genes and (2) to determine whether RGAs can be used as molecular markers for qualitative loci and for QTLs affording resistance to Puccinia coronata. Such genes have been mapped in the diploid A. strigosa × A. wiestii (Asw map) and the hexaploid MN841801-1 × Noble-2 (MN map). Genomic and cDNA NBS-RGA probes from oat, barley and wheat were used to produce RFLPs and to obtain markers by motif-directed profiling based on the NBS (NBS profiling) and PK (PK profiling) domains. The efficiency of primers used in NBS/PK profiling to amplify RGA fragments was assessed by sequencing individual marker bands derived from genomic and cDNA fragments. The positions of 184 markers were identified in the Asw map, while those for 99 were identified in the MN map. Large numbers of NBS and PK profiling markers were found in clusters across different linkage groups, with the PK profiling markers more evenly distributed. The location of markers throughout the genetic maps and the composition of marker clusters indicate that NBS- and PK-based markers cover partly complementary regions of oat genomes. Markers of the different classes obtained were found associated with the two resistance loci, PcA and R-284B-2, mapped on Asw, and with five out of eight QTLs for partial resistance in the MN map. 53 RGA-RFLPs and 187 NBS/PK profiling markers were also mapped on the hexaploid map A. byzantina cv. Kanota × A. sativa cv. Ogle. Significant co-localization was seen between the RGA markers in the KO map and other markers closely linked to resistance loci, such as those for P. coronata and barley yellow dwarf virus (Bydv) that were previously mapped in other segregating populations.
Collapse
Affiliation(s)
- M J Sanz
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, Ctra. Madrid-Barcelona km 33,600, Alcalá de Henares, 28871 Madrid, Spain
| | | | | | | | | |
Collapse
|