1
|
Modi AD, Khan AN, Cheng WYE, Modi DM. KCCs, NKCCs, and NCC: Potential targets for cardiovascular therapeutics? A comprehensive review of cell and region specific expression and function. Acta Histochem 2023; 125:152045. [PMID: 37201245 DOI: 10.1016/j.acthis.2023.152045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Cardiovascular diseases, the leading life-threatening conditions, involve cardiac arrhythmia, coronary artery disease, myocardial infarction, heart failure, cardiomyopathy, and heart valve disease that are associated with the altered functioning of cation-chloride cotransporters. The decreased number of cation-chloride cotransporters leads to reduced reactivity to adrenergic stimulation. The KCC family is crucial for numerous physiological processes including cell proliferation and invasion, regulation of membrane trafficking, maintaining ionic and osmotic homeostasis, erythrocyte swelling, dendritic spine formation, maturation of postsynaptic GABAergic inhibition, and inhibitory/excitatory signaling in neural tracts. KCC2 maintains intracellular chlorine homeostasis and opposes β-adrenergic stimulation-induced Cl- influx to prevent arrhythmogenesis. KCC3-inactivated cardiac tissue shows increased vascular resistance, aortic distensibility, heart size and weight (i.e. hypertrophic cardiomyopathy). Due to KCC4's high affinity for K+, it plays a vital role in cardiac ischemia with increased extracellular K+. The NKCC and NCC families play a vital role in the regulation of saliva volume, establishing the potassium-rich endolymph in the cochlea, sodium uptake in astrocytes, inhibiting myogenic response in microcirculatory beds, regulation of smooth muscle tone in resistance vessels, and blood pressure. NKCC1 regulates chlorine homeostasis and knocking it out impairs cardiomyocyte depolarization and cardiac contractility as well as impairs depolarization and contractility of vascular smooth muscle rings in the aorta. The activation of NCC in vascular cells promotes the formation of the abdominal aortic aneurysm. This narrative review provides a deep insight into the structure and function of KCCs, NKCCs, and NCC in human physiology and cardiac pathobiology. Also, it provides cell-specific (21 cell types) and region-specific (6 regions) expression of KCC1, KCC2, KCC3, KCC4, NKCC1, NKCC2, and NCC in heart.
Collapse
Affiliation(s)
- Akshat D Modi
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Genetics and Development, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.
| | - Areej Naim Khan
- Department of Human Biology, University of Toronto, Toronto, Ontario M5S 3J6, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wing Yan Elizabeth Cheng
- Department of Neuroscience, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Biochemistry, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| | | |
Collapse
|
2
|
Yu J, Wang G, Chen Z, Wan L, Zhou J, Cai J, Liu X, Wang Y. Deficit of PKHD1L1 in the dentate gyrus increases seizure susceptibility in mice. Hum Mol Genet 2023; 32:506-519. [PMID: 36067019 DOI: 10.1093/hmg/ddac220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023] Open
Abstract
Epilepsy is a chronic neurological disorder featuring recurrent, unprovoked seizures, which affect more than 65 million people worldwide. Here, we discover that the PKHD1L1, which is encoded by polycystic kidney and hepatic disease1-like 1 (Pkhd1l1), wildly distributes in neurons in the central nervous system (CNS) of mice. Disruption of PKHD1L1 in the dentate gyrus region of the hippocampus leads to increased susceptibility to pentylenetetrazol-induced seizures in mice. The disturbance of PKHD1L1 leads to the overactivation of the mitogen-activated protein kinase (MAPK)/extracellular regulated kinase (ERK)-Calpain pathway, which is accompanied by remarkable degradation of cytoplasmic potassium chloride co-transporter 2 (KCC2) level together with the impaired expression and function of membrane KCC2. However, the reduction of membrane KCC2 is associated with the damaged inhibitory ability of the vital GABA receptors, which ultimately leads to the significantly increased susceptibility to epileptic seizures. Our data, thus, indicate for the first time that Pkhd1l1, a newly discovered polycystic kidney disease (PKD) association gene, is required in neurons to maintain neuronal excitability by regulation of KCC2 expression in CNS. A new mechanism of the clinical association between genetic PKD and seizures has been built, which could be a potential therapeutic target for treating PKD-related seizures.
Collapse
Affiliation(s)
- Jiangning Yu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoxiang Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiyun Chen
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Wan
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Rehabilitation Center, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Rehabilitation Center, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Jingyi Cai
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Liu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Smith TC, Vasilakos G, Shaffer SA, Puglise JM, Chou CH, Barton ER, Luna EJ. Novel γ-sarcoglycan interactors in murine muscle membranes. Skelet Muscle 2022; 12:2. [PMID: 35065666 PMCID: PMC8783446 DOI: 10.1186/s13395-021-00285-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sarcoglycan complex (SC) is part of a network that links the striated muscle cytoskeleton to the basal lamina across the sarcolemma. The SC coordinates changes in phosphorylation and Ca++-flux during mechanical deformation, and these processes are disrupted with loss-of-function mutations in gamma-sarcoglycan (Sgcg) that cause Limb girdle muscular dystrophy 2C/R5. METHODS To gain insight into how the SC mediates mechano-signaling in muscle, we utilized LC-MS/MS proteomics of SC-associated proteins in immunoprecipitates from enriched sarcolemmal fractions. Criteria for inclusion were co-immunoprecipitation with anti-Sgcg from C57BL/6 control muscle and under-representation in parallel experiments with Sgcg-null muscle and with non-specific IgG. Validation of interaction was performed in co-expression experiments in human RH30 rhabdomyosarcoma cells. RESULTS We identified 19 candidates as direct or indirect interactors for Sgcg, including the other 3 SC proteins. Novel potential interactors included protein-phosphatase-1-catalytic-subunit-beta (Ppp1cb, PP1b) and Na+-K+-Cl--co-transporter NKCC1 (SLC12A2). NKCC1 co-localized with Sgcg after co-expression in human RH30 rhabdomyosarcoma cells, and its cytosolic domains depleted Sgcg from cell lysates upon immunoprecipitation and co-localized with Sgcg after detergent permeabilization. NKCC1 localized in proximity to the dystrophin complex at costameres in vivo. Bumetanide inhibition of NKCC1 cotransporter activity in isolated muscles reduced SC-dependent, strain-induced increases in phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). In silico analysis suggests that candidate SC interactors may cross-talk with survival signaling pathways, including p53, estrogen receptor, and TRIM25. CONCLUSIONS Results support that NKCC1 is a new SC-associated signaling protein. Moreover, the identities of other candidate SC interactors suggest ways by which the SC and NKCC1, along with other Sgcg interactors such as the membrane-cytoskeleton linker archvillin, may regulate kinase- and Ca++-mediated survival signaling in skeletal muscle.
Collapse
Affiliation(s)
- Tara C Smith
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgios Vasilakos
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Scott A Shaffer
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Jason M Puglise
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Chih-Hsuan Chou
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Elisabeth R Barton
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA.
| | - Elizabeth J Luna
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
NF-κB mediates early blood-brain barrier disruption in a rat model of traumatic shock. J Trauma Acute Care Surg 2020; 86:240-249. [PMID: 30399134 DOI: 10.1097/ta.0000000000002124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption is associated with a large number of central nervous system and systemic disorders. The aim of the present study was to investigate the dynamic change of BBB changes during traumatic shock and resuscitation as well as the mechanisms involved. METHODS The experiments were performed on male Sprague-Dawley rats anesthetized with pentobarbital sodium. To produce traumatic shock, the rats were subjected to bilateral femoral traumatic fracture and blood withdrawal from the femoral artery to decrease mean arterial pressure (MAP) to 35 mm Hg. Hypovolemic status (at a MAP of 35 to 40 mm Hg) was sustained for 1 hour followed by fluid resuscitation with shed blood and 20 mL/kg of lactated Ringer's solution. RESULTS The rats were sacrificed at 1 hour, 2 hours, or 6 hours after fluid resuscitation. Blood-brain barrier permeability studies showed that traumatic shock significantly increased brain water contents and sodium fluorescein leakage, which was aggravated by fluid resuscitation. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses revealed that Na-K-Cl cotransporter-1 and vascular endothelial growth factor (VEGF) expression were upregulated in cortical brain tissue of traumatic shock rats, and this change was accompanied by downregulation of occludin and claudin-5. Traumatic shock also significantly increased the protein levels of NF-κB-p65 subunit. Of note, administration of NF-κB inhibitor PDTC effectively attenuated augmentation of the above changes. CONCLUSION Our results suggest that traumatic shock is associated with early BBB disruption, and inhibition of NF-κB may be an effective therapeutic strategy in protecting the BBB under traumatic shock conditions.
Collapse
|
5
|
Capolongo G, Suzumoto Y, D'Acierno M, Simeoni M, Capasso G, Zacchia M. ERK1,2 Signalling Pathway along the Nephron and Its Role in Acid-base and Electrolytes Balance. Int J Mol Sci 2019; 20:E4153. [PMID: 31450703 PMCID: PMC6747339 DOI: 10.3390/ijms20174153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are intracellular molecules regulating a wide range of cellular functions, including proliferation, differentiation, apoptosis, cytoskeleton remodeling and cytokine production. MAPK activity has been shown in normal kidney, and its over-activation has been demonstrated in several renal diseases. The extracellular signal-regulated protein kinases (ERK 1,2) signalling pathway is the first described MAPK signaling. Intensive investigations have demonstrated that it participates in the regulation of ureteric bud branching, a fundamental process in establishing final nephron number; in addition, it is also involved in the differentiation of the nephrogenic mesenchyme, indicating a key role in mammalian kidney embryonic development. In the present manuscript, we show that ERK1,2 signalling mediates several cellular functions also in mature kidney, describing its role along the nephron and demonstrating whether it contributes to the regulation of ion channels and transporters implicated in acid-base and electrolytes homeostasis.
Collapse
Affiliation(s)
- Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | | | | | - Mariadelina Simeoni
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Biogem Scarl, 83031 Ariano Irpino, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| |
Collapse
|
6
|
Szabo A, Fekete T, Koncz G, Kumar BV, Pazmandi K, Foldvari Z, Hegedus B, Garay T, Bacsi A, Rajnavolgyi E, Lanyi A. RIG-I inhibits the MAPK-dependent proliferation of BRAF mutant melanoma cells via MKP-1. Cell Signal 2016; 28:335-347. [PMID: 26829212 DOI: 10.1016/j.cellsig.2016.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND BRAF-mutant melanoma is characterized by aggressive metastatic potential and therapeutic resistance. The innate immune receptor RIG-I has emerged as a potential target in melanoma therapies but the contributing pathways involved in anti-cancer activity are poorly characterized. METHODS Baseline and ATRA-induced expression of RIG-I in nine (3 wild type and 6 BRAF-mutant) melanoma cell lines was measured with Q-PCR and Western blot. Ligand-specific stimulation of RIG-I was detected by Q-PCR and ELISA. Activation of the RIG-I-coupled IRF3, NF-κB and MAPK pathways was tested with protein array and Western blot. Cell proliferation and apoptosis was monitored by flow cytometry and cell counting. Down modulation of MKP-1 expression in melanoma cells was performed by specific siRNA. RESULTS Short-term ATRA pre-treatment increases the expression of RIG-I in BRAF-mutant melanoma cells. Specific activation of RIG-I by 5'ppp-dsRNA leads to increased activity of the IRF3-IFNβ pathway but does not influence NF-κB signaling. RIG-I mediates the targeted dephosphorylation of several MAPKs (p38, RSK1, GSK-3α/β, HSP27) via the endogenous regulator MKP-1 resulting in decreased melanoma cell proliferation. CONCLUSION RIG-I has the potential to exert anticancer activity in BRAF-mutant melanoma via controlling IFNβ production and MAPK signaling. This is the first study showing that RIG-I activation results in MKP-1-mediated inhibition of cell proliferation via controlling the p38-HSP27, c-Jun and rpS6 pathways thus identifying RIG-I and MKP-1 as novel and promising therapeutical targets.
Collapse
Affiliation(s)
- Attila Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania.
| | - Tunde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| | - Brahma V Kumar
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Pazmandi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsofia Foldvari
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Hegedus
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamas Garay
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| | - Eva Rajnavolgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| | - Arpad Lanyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| |
Collapse
|
7
|
Zanou N, Mondin L, Fuster C, Seghers F, Dufour I, de Clippele M, Schakman O, Tajeddine N, Iwata Y, Wakabayashi S, Voets T, Allard B, Gailly P. Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres. J Physiol 2015; 593:3849-63. [PMID: 26108786 DOI: 10.1113/jp270522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/19/2015] [Indexed: 11/08/2022] Open
Abstract
Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock-induced CS is accompanied by a small membrane depolarization responsible for a release of Ca(2+) from intracellular pools. Hyperosmotic shock also induces phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK). TRPV2 dominant negative expressing fibres challenged with hyperosmotic shock present a slower membrane depolarization, a diminished Ca(2+) response, a smaller RVI response, a decrease in SPAK phosphorylation and defective muscle function. We suggest that hyperosmotic shock induces TRPV2 activation, which accelerates muscle cell depolarization and allows the subsequent Ca(2+) release from the sarcoplasmic reticulum, activation of the Na(+) -K(+) -Cl(-) cotransporter by SPAK, and the RVI response. Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible for a release of Ca(2+) from intracellular pools. We observed that both hyperosmotic shock-induced Ca(2+) transients and RVI were inhibited by Gd(3+) , ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP isoform susceptible to heterotetramerization with TRPV2. The release of Ca(2+) induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2-DN fibres, suggesting that TRPV2 activation triggers the release of Ca(2+) from the sarcoplasmic reticulum by depolarizing TTs. RVI requires the sequential activation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NKCC1, a Na(+) -K(+) -Cl(-) cotransporter, allowing ion entry and driving osmotic water flow. In fibres overexpressing TRPV2-DN as well as in fibres in which Ca(2+) transients were abolished by the Ca(2+) chelator BAPTA, the level of P-SPAK(Ser373) in response to hyperosmotic shock was reduced, suggesting a modulation of SPAK phosphorylation by intracellular Ca(2+) . We conclude that TRPV2 is involved in osmosensation in skeletal muscle fibres, acting in concert with P-SPAK-activated NKCC1.
Collapse
Affiliation(s)
- Nadège Zanou
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Ludivine Mondin
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Clarisse Fuster
- Centre de Génétique et de Physiologie Cellulaire et Moléculaire, Université Claude Bernard Lyon 1, CNRS, UMR 5534, 69622, Villeurbanne, France
| | - François Seghers
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Inès Dufour
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Marie de Clippele
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Olivier Schakman
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Nicolas Tajeddine
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Yuko Iwata
- Department of Molecular Physiology, National Cardiovascular Center Research Institute Suita, Osaka, 565-8565, Japan
| | - Shigeo Wakabayashi
- Department of Molecular Physiology, National Cardiovascular Center Research Institute Suita, Osaka, 565-8565, Japan
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Katholiek Universiteit Leuven, B-3000, Leuven, Belgium
| | - Bruno Allard
- Centre de Génétique et de Physiologie Cellulaire et Moléculaire, Université Claude Bernard Lyon 1, CNRS, UMR 5534, 69622, Villeurbanne, France
| | - Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| |
Collapse
|
8
|
Fu P, Tang R, Yu Z, Huang S, Xie M, Luo X, Wang W. Bumetanide-induced NKCC1 inhibition attenuates oxygen-glucose deprivation-induced decrease in proliferative activity and cell cycle progression arrest in cultured OPCs via p-38 MAPKs. Brain Res 2015; 1613:110-9. [PMID: 25881895 DOI: 10.1016/j.brainres.2015.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/23/2015] [Accepted: 04/04/2015] [Indexed: 11/28/2022]
Abstract
The Na-K-Cl co-transporter 1 (NKCC1; a member of the cation-chloride co-transporter family) mediates the coupled movement of Na(+) and/or K(+) with Cl(-) across the plasma membrane of cells (Haas and Forbush, 2000, Annu. Rev. Physiol., 62, 515-534; Russell, 2000, Physiol. Rev., 80, 211-276). Although it acts as an important regulator of cell volume, secretion, and modulator of cell apoptosis and proliferation (Chen et al., 2005, J. Cereb. Blood Flow Metab., 25, 54-66; Kahle et al., 2008, Nat. Clin. Pract. Neurol., 4, 490-503; Kidokoro et al., 2014, Am. J. Physiol. Ren. Physiol., 306, F1155-F1160; Wang et al., 2011, Cell. Physiol. Biochem., 28, 703-714), NKCC1׳s effects on oligodendrocyte precursor cells (OPCs) have not been characterized. The aim of this study was to investigate whether and to what extent inhibition of NKCC1 alters oxygen glucose deprivation (OGD)-induced cell cycle progression. In the present study, we demonstrated that inhibition of NKCC1 with bumetanide attenuates the decrease in OGD-induced DNA synthesis in cultured OPCs. Western blots showed that NKCC1 inhibition led to an increased expression of cyclin D1, CDK 4, and cyclin E in OGD-treated cells. Furthermore, our results showed bumetanide attenuated the decrease in OGD-induced proliferation and arrest of cell cycle progression via the P-38 MAPK signaling cascade. Thus, NKCC1 plays important roles in the proliferation of OPCs under OGD-induced stress.
Collapse
Affiliation(s)
- Peicai Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ronghua Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, PR China
| | - Shanshan Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, PR China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, PR China.
| |
Collapse
|
9
|
Feng X, Zhang Y, Shao N, Wang Y, Zhuang Z, Wu P, Lee MJ, Liu Y, Wang X, Zhuang J, Delpire E, Gu D, Cai H. Aldosterone modulates thiazide-sensitive sodium chloride cotransporter abundance via DUSP6-mediated ERK1/2 signaling pathway. Am J Physiol Renal Physiol 2015; 308:F1119-27. [PMID: 25761881 DOI: 10.1152/ajprenal.00543.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
Thiazide-sensitive sodium chloride cotransporter (NCC) plays an important role in maintaining blood pressure. Aldosterone is known to modulate NCC abundance. Previous studies reported that dietary salts modulated NCC abundance through either WNK4 [with no lysine (k) kinase 4]-SPAK (Ste20-related proline alanine-rich kinase) or WNK4-extracellular signal-regulated kinase-1 and -2 (ERK1/2) signaling pathways. To exclude the influence of SPAK signaling pathway on the role of the aldosterone-mediated ERK1/2 pathway in NCC regulation, we investigated the effects of dietary salt changes and aldosterone on NCC abundance in SPAK knockout (KO) mice. We found that in SPAK KO mice low-salt diet significantly increased total NCC abundance while reducing ERK1/2 phosphorylation, whereas high-salt diet decreased total NCC while increasing ERK1/2 phosphorylation. Importantly, exogenous aldosterone administration increased total NCC abundance in SPAK KO mice while increasing DUSP6 expression, an ERK1/2-specific phosphatase, and led to decreasing ERK1/2 phosphorylation without changing the ratio of phospho-T53-NCC/total NCC. In mouse distal convoluted tubule (mDCT) cells, aldosterone increased DUSP6 expression while reducing ERK1/2 phosphorylation. DUSP6 Knockdown increased ERK1/2 phosphorylation while reducing total NCC expression. Inhibition of DUSP6 by (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased ERK1/2 phosphorylation and reversed the aldosterone-mediated increments of NCC partly by increasing NCC ubiquitination. Therefore, these data suggest that aldosterone modulates NCC abundance via altering NCC ubiquitination through a DUSP6-dependent ERK1/2 signal pathway in SPAK KO mice and part of the effects of dietary salt changes may be mediated by aldosterone in the DCTs.
Collapse
Affiliation(s)
- Xiuyan Feng
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yiqian Zhang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ningjun Shao
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Yanhui Wang
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Renal Division, the First Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Zhizhi Zhuang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ping Wu
- Renal Division, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Matthew J Lee
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yingli Liu
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Xiaonan Wang
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jieqiu Zhuang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Dingying Gu
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Hui Cai
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia
| |
Collapse
|
10
|
Lin CY, Yang JR, Teng SL, Tsai S, Chen MH. Microarray analysis of gene expression of bone marrow stem cells cocultured with salivary acinar cells. J Formos Med Assoc 2013; 112:713-20. [DOI: 10.1016/j.jfma.2012.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022] Open
|
11
|
Yang Y, Yang H, Wang Z, Mergler S, Wolosin JM, Reinach PS. Functional TRPV1 expression in human corneal fibroblasts. Exp Eye Res 2013; 107:121-9. [PMID: 23232207 PMCID: PMC3556194 DOI: 10.1016/j.exer.2012.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 12/31/2022]
Abstract
Corneal wound healing in mice subsequent to an alkali burn results in dysregulated inflammation and opacification. Transient receptor potential vanilloid subtype 1 (TRPV1) channel activation in all tissue layers by endogenous ligands contributes to this sight compromising outcome since in TRPV1 knockout mice wound healing results instead in tissue transparency restoration. However, it is not known if primary human stromal fibroblasts exhibit such expression even though functional TRPV1 expression is evident in an immortalized human corneal epithelial cell line. In primary human corneal fibroblasts (HCF), TRPV1 gene expression and localization were identified based on the results of quantitative RT-PCR and immunocytochemistry, respectively. Western blot analysis identified a 100 kD protein corresponding to TRPV1 protein expression in a positive control. Single-cell fluorescence imaging detected in fura2-AM loaded cells Ca(2+) transients that rose 1.8-fold above the baseline induced by a selective TRPV1 agonist, capsaicin (CAP), which were blocked by a TRPV1 antagonist, capsazepine (CPZ) or exposure to a Ca(2+) free medium. The whole-cell mode of the planar patch-clamp technique identified TRPV1-induced currents that rose 1.76-fold between -60 and +130 mV. CAP-induced time dependent changes in the phosphorylation status of mitogen activated protein kinase (MAPK) signaling mediators that led to a 2.5-fold increase in IL-6 release after 24 h. This rise did not occur either in TRPV1 siRNA gene silenced cells or during exposure to SB203580 (10 μM), a selective p38 MAPK inhibitor. Taken together, identification of functional TRPV1 expression in HCF suggests that in vivo its activation by injury contributes to corneal opacification and inflammation during wound healing. These undesirable effects may result in part from increases in IL-6 expression mediated by p-p38 MAPK signaling.
Collapse
Affiliation(s)
- Yuanquan Yang
- Department of Biological Sciences, State University of New York, State College of Optometry,, New York, NY 10036
| | - Hua Yang
- Department of Biological Sciences, State University of New York, State College of Optometry,, New York, NY 10036
| | - Zheng Wang
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029
| | - Stefan Mergler
- Department of Ophthalmology, Charité, University Berlin, Campus Virchow-Clinic, Berlin, Germany
| | - J. Mario Wolosin
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029
| | - Peter S. Reinach
- Department of Biological Sciences, State University of New York, State College of Optometry,, New York, NY 10036
| |
Collapse
|