1
|
von Fallois M, Kosyna FK, Mandl M, Landesman Y, Dunst J, Depping R. Selinexor decreases HIF-1α via inhibition of CRM1 in human osteosarcoma and hepatoma cells associated with an increased radiosensitivity. J Cancer Res Clin Oncol 2021; 147:2025-2033. [PMID: 33856525 PMCID: PMC8164574 DOI: 10.1007/s00432-021-03626-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/30/2021] [Indexed: 10/29/2022]
Abstract
BACKGROUND The nuclear pore complexes (NPCs) are built of about 30 different nucleoporins and act as key regulators of molecular traffic between the cytoplasm and the nucleus for sizeable proteins (> 40 kDa) which must enter the nucleus. Various nuclear transport receptors are involved in import and export processes of proteins through the nuclear pores. The most prominent nuclear export receptor is chromosome region maintenance 1 (CRM1), also known as exportin 1 (XPO1). One of its cargo proteins is the prolyl hydroxylase 2 (PHD2) which is involved in the initiation of the degradation of hypoxia-inducible factors (HIFs) under normoxia. HIFs are proteins that regulate the cellular adaptation under hypoxic conditions. They are involved in many aspects of cell viability and play an important role in the hypoxic microenvironment of cancer. In cancer, CRM1 is often overexpressed thus being a putative target for the development of new cancer therapies. The newly FDA-approved pharmaceutical Selinexor (KPT-330) selectively inhibits nuclear export via CRM1 and is currently tested in additional Phase-III clinical trials. In this study, we investigated the effect of CRM1 inhibition on the subcellular localization of HIF-1α and radiosensitivity. METHODS Human hepatoma cells Hep3B and human osteosarcoma cells U2OS were treated with Selinexor. Intranuclear concentration of HIF-1α protein was measured using immunoblot analysis. Furthermore, cells were irradiated with 2-8 Gy after treatment with Selinexor compared to untreated controls. RESULTS Selinexor significantly reduced the intranuclear level of HIF-1α protein in human hepatoma cells Hep3B and human osteosarcoma cells U2OS. Moreover, we demonstrated by clonogenic survival assays that Selinexor leads to dose-dependent radiosensitization in Hep3B-hepatoma and U2OS-osteosarcoma cells. CONCLUSION Targeting the HIF pathway by Selinexor might be an attractive tool to overcome hypoxia-induced radioresistance.
Collapse
MESH Headings
- Apoptosis
- Bone Neoplasms/drug therapy
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Bone Neoplasms/radiotherapy
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/radiotherapy
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Hydrazines/pharmacology
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/radiotherapy
- Osteosarcoma/drug therapy
- Osteosarcoma/metabolism
- Osteosarcoma/pathology
- Osteosarcoma/radiotherapy
- Radiation Tolerance/drug effects
- Radiation-Sensitizing Agents/pharmacology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Triazoles/pharmacology
- Tumor Cells, Cultured
- Exportin 1 Protein
Collapse
Affiliation(s)
- Moritz von Fallois
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Friederike Katharina Kosyna
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Markus Mandl
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Yosef Landesman
- Karyopharm Therapeutics, 85 Wells Ave, Newton, MA, 02459, USA
| | - Jürgen Dunst
- Universitätsklinikum Schleswig-Holstein, Campus Kiel-Klinik für Strahlentherapie, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Reinhard Depping
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
2
|
|
3
|
Coliat P, Ramolu L, Jégu J, Gaiddon C, Jung AC, Pencreach E. Constitutive or Induced HIF-2 Addiction is Involved in Resistance to Anti-EGFR Treatment and Radiation Therapy in HNSCC. Cancers (Basel) 2019; 11:cancers11101607. [PMID: 31640284 PMCID: PMC6827016 DOI: 10.3390/cancers11101607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND management of head and neck squamous cell carcinomas (HNSCC) include anti-Epidermal Growth Factor Receptor (EGFR) antibodies and radiotherapy, but resistance emerges in most patients. RAS mutations lead to primary resistance to EGFR blockade in metastatic colorectal cancer but are infrequent in HNSCC, suggesting that other mechanisms are implicated. Since hypoxia and Hypoxia Inducible Factor-1 (HIF-1) have been associated with treatment failure and tumor progression, we hypothesized that EGFR/mammalian Target Of Rapamycin (mTOR)/HIF-1 axis inhibition could radiosensitize HNSCC. METHODS We treated the radiosensitive Cal27 used as control, and radioresistant SQ20B and UD-SCC1 cells, in vivo and in vitro, with rapamycin and cetuximab before irradiation and evaluated tumor progression and clonogenic survival. RESULTS Rapamycin and cetuximab inhibited the mTOR/HIF-1α axis, and sensitized the SQ20B cell line to EGFR-inhibition. However, concomitant delivery of radiation to SQ20B xenografts increased tumor relapse frequency, despite effective HIF-1 inhibition. Treatment failure was associated with the induction of HIF-2α expression by cetuximab and radiotherapy. Strikingly, SQ20B and UD-SCC1 cells clonogenic survival dropped <30% after HIF-2α silencing, suggesting a HIF-2-dependent mechanism of oncogenic addiction. CONCLUSIONS altogether, our data suggest that resistance to EGFR inhibition combined with radiotherapy in HNSCC may depend on tumor HIF-2 expression and underline the urgent need to develop novel HIF-2 targeted treatments.
Collapse
Affiliation(s)
- Pierre Coliat
- Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Service de Pharmacie, Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Ludivine Ramolu
- Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Jérémie Jégu
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
- Laboratoire d'Épidémiologie et de Santé Publique, Université de Strasbourg, 67200 Strasbourg, France.
- Service de Santé Publique, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France.
| | - Christian Gaiddon
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Alain C Jung
- Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Erwan Pencreach
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France.
| |
Collapse
|
4
|
Song X, Zhang M, Dai E, Luo Y. Molecular targets of curcumin in breast cancer (Review). Mol Med Rep 2018; 19:23-29. [PMID: 30483727 DOI: 10.3892/mmr.2018.9665] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/25/2018] [Indexed: 11/06/2022] Open
Abstract
Curcumin (diferuloylmethane), an orange‑yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of Curcuma longa. For centuries, curcumin has been used in medicinal preparations and as a food colorant. In recent years, extensive in vitro and in vivo studies have suggested that curcumin possesses activity against cancer, viral infection, arthritis, amyloid aggregation, oxidation and inflammation. Curcumin exerts anticancer effects primarily by activating apoptotic pathways in cancer cells and inhibiting pro‑cancer processes, including inflammation, angiogenesis and metastasis. Curcumin targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, Ras, phosphatidylinositol‑3‑kinase, protein kinase B, Wnt‑β catenin and mammalian target of rapamycin. Clinical studies have demonstrated that curcumin alone or combined with other drugs exhibits promising anticancer activity in patients with breast cancer without adverse effects. In the present review, the chemistry and bioavailability of curcumin and its molecular targets in breast cancer are discussed. Future research directions are discussed to further understand this promising natural product.
Collapse
Affiliation(s)
- Xinqiang Song
- Department of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Mu Zhang
- Hospital Attached to Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Erqin Dai
- Hospital Attached to Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, P.R. China
| |
Collapse
|
5
|
Imaging of hypoxia-inducible factor 1α and septin 9 interaction by bimolecular fluorescence complementation in live cancer cells. Oncotarget 2018; 8:31830-31841. [PMID: 28380438 PMCID: PMC5458251 DOI: 10.18632/oncotarget.16527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/15/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a major mediator of the hypoxic response involved in tumor progression. We had earlier described the interaction between septin 9 isoform 1 (SEPT9_i1) protein and the oxygen-regulated subunit, HIF-1α. SEPT9_i1 is a member of the conserved family of GTP-binding cytoskeleton septins. SEPT9_i1 stabilizes HIF-1α and facilitates its cytoplasmic-nuclear translocation. We utilized split yellow fluorescent protein (YFP) bimolecular fluorescence complementation (BiFC) methodology to monitor the interaction between HIF-1α and SEPT9_i1 in live cells. N-terminal (YN) and C-terminal (YC) split YFP chimeras with HIF-1α and SEPT9_i1 on both their amino and carboxyl termini were generated. HIF-1α and SEPT9_i1 chimeras were expressed in cancer cells and screened for functional complementation. SEPT9_i1-YN and YC-HIF-1α formed a long-lived highly stable complex upon interaction. The BiFC signal was increased in the presence of hypoxia-mimicking agents. In contrast, YC-ΔHLH-HIF-1α chimera, which lacked the helix-loop-helix domain that is essential for the interaction with SEPT9_i1 as well as the expression of SEPT9_i1 252-379 amino acids fragment required for the interaction with HIF-1α, significantly reduced the BiFC signal. The signal was also reduced when cells were treated with 17-N-allylamino-17-demethoxygeldanamycin, an HSP90 inhibitor that inhibits HIF-1α. It was increased with fourchlorfenuron, a small molecule that increases the interaction between HIF-1α and SEPT9_i1. These results reconfirmed the interaction between HIF-1α and SEPT9_i1 that was imaged in live cells. This BiFC system represents a novel approach for studying the real-time interaction between these two proteins and will allow high-throughput drug screening to identity compounds that disrupt this interaction.
Collapse
|
6
|
Depping R, Oster H. Interplay between environmentally modulated feedback loops - hypoxia and circadian rhythms - two sides of the same coin? FEBS J 2017; 284:3801-3803. [PMID: 29154494 DOI: 10.1111/febs.14306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensing of environmental parameters is critically important for cells of metazoan organisms. Members of the superfamily of bHLH-PAS transcription factors, involved in oxygen sensing and circadian rhythm generation, are important players in such molecular pathways. The interplay between both networks includes a so far unknown factor, connecting PER2 (circadian clocks) to hypoxia sensing (HIF-1 α) to result in a more adapted state of homeostasis at the right time.
Collapse
Affiliation(s)
| | - Henrik Oster
- Institute for Neurobiology, University of Lübeck, Germany
| |
Collapse
|
7
|
Xie G, Liu Y, Yao Q, Zheng R, Zhang L, Lin J, Guo Z, Du S, Ren C, Yuan Q, Yuan Y. Hypoxia-induced angiotensin II by the lactate-chymase-dependent mechanism mediates radioresistance of hypoxic tumor cells. Sci Rep 2017; 7:42396. [PMID: 28205588 PMCID: PMC5311966 DOI: 10.1038/srep42396] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/09/2017] [Indexed: 01/12/2023] Open
Abstract
The renin-angiotensin system (RAS) is a principal determinant of arterial blood pressure and fluid and electrolyte balance. RAS component dysregulation was recently found in some malignancies and correlated with poor patient outcomes. However, the exact mechanism of local RAS activation in tumors is still unclear. Here, we find that the local angiotensin II predominantly exists in the hypoxic regions of tumor formed by nasopharyngeal carcinoma CNE2 cells and breast cancer MDA-MB-231 cells, where these tumor cells autocrinely produce angiotensin II by a chymase-dependent rather than an angiotensin converting enzyme-dependent mechanism. We further demonstrate in nasopharyngeal carcinoma CNE2 and 5–8F cells that this chymase-dependent effect is mediated by increased levels of lactate, a by-product of glycolytic metabolism. Finally, we show that the enhanced angiotensin II plays an important role in the intracellular accumulation of HIF-1α of hypoxic nasopharyngeal carcinoma cells and mediates the radiation-resistant phenotype of these nasopharyngeal carcinoma cells. Thus, our findings reveal the critical role of hypoxia in producing local angiotensin II by a lactate-chymase-dependent mechanism and highlight the importance of local angiotensin II in regulating radioresistance of hypoxic tumor cells.
Collapse
Affiliation(s)
- Guozhu Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiwei Yao
- Department of Radiation Oncology, Teaching Hospital of Fujian Provincial Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Rong Zheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lanfang Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jie Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhaoze Guo
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shasha Du
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chen Ren
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Quan Yuan
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yawei Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
8
|
Mandl M, Lieberum MK, Dunst J, Depping R. The expression level of the transcription factor Aryl hydrocarbon receptor nuclear translocator (ARNT) determines cellular survival after radiation treatment. Radiat Oncol 2015; 10:229. [PMID: 26572229 PMCID: PMC4647475 DOI: 10.1186/s13014-015-0539-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022] Open
Abstract
Background Tumour hypoxia promotes radioresistance and is associated with poor prognosis. The transcription factor Aryl hydrocarbon receptor nuclear translocator (ARNT), also designated as Hypoxia-inducible factor (HIF)-1β, is part of the HIF pathway which mediates cellular adaptations to oxygen deprivation and facilitates tumour progression. The subunits HIF-1α and ARNT are key players within this pathway. HIF-1α is regulated in an oxygen-dependent manner whereas ARNT is considered to be constitutively expressed. However, there is mounting evidence that certain tumour cells are capable to elevate ARNT in hypoxia which suggests a survival benefit. Therefore the objective of this study was to elucidate effects of an altered ARNT expression level on the cellular response to radiation. Methods Different human cell lines (Hep3B, MCF-7, 786-Owt, 786-Ovhl, RCC4wt and RCC4vhl) originating from various tumour entities (Hepatocellular carcinoma, breast cancer and renal cell carcinoma respectively) were X-irradiated using a conventional linear accelerator. Knockdown of ARNT expression was achieved by transient siRNA transfection. Complementary experiments were performed by forced ARNT overexpression using appropriate plasmids. Presence/absence of ARNT protein was confirmed by Western blot analysis. Clonogenic survival assays were performed in order to determine cellular survival post irradiation. Statistical comparison of two groups was achieved by the unpaired t-test. Results The results of this study indicate that ARNT depletion renders tumour cells susceptible to radiation whereas overexpression of this transcription factor confers radioresistance. Conclusions These findings provide evidence to consider ARNT as a drug target and as a predictive marker in clinical applications concerning the response to radiation. Electronic supplementary material The online version of this article (doi:10.1186/s13014-015-0539-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Markus Mandl
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany.
| | - Maria- Katharina Lieberum
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany. .,Klinik für Strahlentherapie, Universitaetsklinikum Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.
| | - Juergen Dunst
- Klinik für Strahlentherapie, Universitaetsklinikum Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.
| | - Reinhard Depping
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany.
| |
Collapse
|
9
|
Zhao J, Du F, Luo Y, Shen G, Zheng F, Xu B. The emerging role of hypoxia-inducible factor-2 involved in chemo/radioresistance in solid tumors. Cancer Treat Rev 2015; 41:623-33. [PMID: 25981453 DOI: 10.1016/j.ctrv.2015.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 01/30/2023]
Abstract
The hypoxic condition is a common feature that negatively impacts the efficacy of radio- and chemotherapy in solid tumors. Hypoxia-inducible factors (HIF-1, 2, 3) predominantly regulate the adaptation to hypoxia at the cellular or organismal level. HIF-2 is one of the three known alpha subunits of HIF transcription factors. Previous studies have shown that HIF-1 is associated with chemotherapy failure. Accumulating evidence in recent years suggests that HIF-2 also contributes to chemo/radioresistance in solid tumors. Despite sharing similar structures, HIF-1α and HIF-2α had highly divergent and even opposing roles in solid tumors under hypoxic conditions. Recent studies have also implied that HIF-2α had a role in chemo/radioresistance through different mechanisms, at least partly, compared to HIF-1α. The present paper summarizes the function of HIF-2 in chemo/radioresistance in solid tumors as well as some of its novel mechanisms that contributed to this pathological process.
Collapse
Affiliation(s)
- Jiuda Zhao
- Department of Medical Oncology, Cancer Institute & Hospital, Peking Union Medical College, Beijing, China; Chinese Academy of Medical Science, Beijing, China; Affiliated Hospital of Qinghai University, Xining, China
| | - Feng Du
- Department of Medical Oncology, Cancer Institute & Hospital, Peking Union Medical College, Beijing, China; Chinese Academy of Medical Science, Beijing, China
| | - Yang Luo
- Department of Medical Oncology, Cancer Institute & Hospital, Peking Union Medical College, Beijing, China; Chinese Academy of Medical Science, Beijing, China
| | - Guoshuang Shen
- Affiliated Hospital of Qinghai University, Xining, China
| | - Fangchao Zheng
- Affiliated Hospital of Qinghai University, Xining, China
| | - Binghe Xu
- Department of Medical Oncology, Cancer Institute & Hospital, Peking Union Medical College, Beijing, China; Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
10
|
Harnoss JM, Strowitzki MJ, Radhakrishnan P, Platzer LK, Harnoss JC, Hank T, Cai J, Ulrich A, Schneider M. Therapeutic inhibition of prolyl hydroxylase domain-containing enzymes in surgery: putative applications and challenges. HYPOXIA 2015; 3:1-14. [PMID: 27774478 PMCID: PMC5045068 DOI: 10.2147/hp.s60872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxygen is essential for metazoans to generate energy. Upon oxygen deprivation adaptive and protective pathways are induced, mediated by hypoxia-inducible factors (HIFs) and prolyl hydroxylase domain-containing enzymes (PHDs). Both play a pivotal role in various conditions associated with prolonged ischemia and inflammation, and are promising targets for therapeutic intervention. This review focuses on aspects of therapeutic PHD modulation in surgically relevant disease conditions such as hepatic and intestinal disorders, wound healing, innate immune responses, and tumorigenesis, and discusses the therapeutic potential and challenges of PHD inhibition in surgical patients.
Collapse
Affiliation(s)
- Jonathan Michael Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Moritz Johannes Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Lisa Katharina Platzer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Julian Camill Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Hank
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jun Cai
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Clarke RH, Moosa S, Anzivino M, Wang Y, Floyd DH, Purow BW, Lee KS. Sustained radiosensitization of hypoxic glioma cells after oxygen pretreatment in an animal model of glioblastoma and in vitro models of tumor hypoxia. PLoS One 2014; 9:e111199. [PMID: 25350400 PMCID: PMC4211739 DOI: 10.1371/journal.pone.0111199] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/29/2014] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation-resistant hypoxic cancer cells, and could serve as a safe and effective adjuvant to radiation therapy for patients with GBM.
Collapse
Affiliation(s)
- Ryon H. Clarke
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Shayan Moosa
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Matthew Anzivino
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Yi Wang
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Desiree Hunt Floyd
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
- Division of Neuro-Oncology, Departments of Neurology, Microbiology, and Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Benjamin W. Purow
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
- Division of Neuro-Oncology, Departments of Neurology, Microbiology, and Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Kevin S. Lee
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States of America
| |
Collapse
|
12
|
Mandl M, Depping R. Hypoxia-inducible aryl hydrocarbon receptor nuclear translocator (ARNT) (HIF-1β): is it a rare exception? Mol Med 2014; 20:215-20. [PMID: 24849811 DOI: 10.2119/molmed.2014.00032] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 12/29/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT), also designated as hypoxia-inducible factor (HIF)-1β, plays a pivotal role in the adaptive responses to (micro-)environmental stresses such as dioxin exposure and oxygen deprivation (hypoxia). ARNT belongs to the group of basic helix-loop-helix (bHLH)-Per-ARNT-Sim (PAS) transcription factors, which act as heterodimers. ARNT serves as a common binding partner for the aryl hydrocarbon receptor (AhR) as well as HIF-α subunits. HIF-α proteins are regulated in an oxygen-dependent manner, whereas ARNT is generally regarded as constitutively expressed, meaning that neither the arnt mRNA nor the protein level is influenced by hypoxia (despite the name HIF-1β). However, there is emerging evidence that tumor cells derived from different entities are able to upregulate ARNT, especially under low oxygen tension in a cell-specific manner. The objective of this review is therefore to highlight and summarize current knowledge regarding the hypoxia-dependent upregulation of ARNT, which is in sharp contrast to the general point of view described in the literature. Elucidating the mechanism behind this rare cellular attribute will help us to gain new insights into HIF biology and might provide new strategies for anti-cancer therapeutics. In conclusion, putative treatment effects on ARNT should be taken into account while studying the HIF pathway. This step is of great importance when ARNT is intended to serve as a loading control or as a reference.
Collapse
Affiliation(s)
- Markus Mandl
- University of Lübeck, Center for Structural and Cell Biology in Medicine, Institute of Physiology, Lübeck, Germany
| | - Reinhard Depping
- University of Lübeck, Center for Structural and Cell Biology in Medicine, Institute of Physiology, Lübeck, Germany
| |
Collapse
|
13
|
Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:272-96. [PMID: 22579961 PMCID: PMC3788359 DOI: 10.1016/j.bbcan.2012.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 12/13/2022]
Abstract
Hypoxia is one of the fundamental biological phenomena that are intricately associated with the development and aggressiveness of a variety of solid tumors. Hypoxia-inducible factors (HIF) function as a master transcription factor, which regulates hypoxia responsive genes and has been recognized to play critical roles in tumor invasion, metastasis, and chemo-radiation resistance, and contributes to increased cell proliferation, survival, angiogenesis and metastasis. Therefore, tumor hypoxia with deregulated expression of HIF and its biological consequence lead to poor prognosis of patients diagnosed with solid tumors, resulting in higher mortality, suggesting that understanding of the molecular relationship of hypoxia with other cellular features of tumor aggressiveness would be invaluable for developing newer targeted therapy for solid tumors. It has been well recognized that cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) phenotypic cells are associated with therapeutic resistance and contribute to aggressive tumor growth, invasion, metastasis and believed to be the cause of tumor recurrence. Interestingly, hypoxia and HIF signaling pathway are known to play an important role in the regulation and sustenance of CSCs and EMT phenotype. However, the molecular relationship between HIF signaling pathway with the biology of CSCs and EMT remains unclear although NF-κB, PI3K/Akt/mTOR, Notch, Wnt/β-catenin, and Hedgehog signaling pathways have been recognized as important regulators of CSCs and EMT. In this article, we will discuss the state of our knowledge on the role of HIF-hypoxia signaling pathway and its kinship with CSCs and EMT within the tumor microenvironment. We will also discuss the potential role of hypoxia-induced microRNAs (miRNAs) in tumor development and aggressiveness, and finally discuss the potential effects of nutraceuticals on the biology of CSCs and EMT in the context of tumor hypoxia.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Asfar S. Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Shadan Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
14
|
Mamlouk S, Wielockx B. Hypoxia-inducible factors as key regulators of tumor inflammation. Int J Cancer 2012; 132:2721-9. [PMID: 23055435 DOI: 10.1002/ijc.27901] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/25/2012] [Indexed: 12/23/2022]
Abstract
Low levels of oxygen or hypoxia is often an obstacle in health, particularly in pathological disorders like cancer. The main family of transcription factors responsible for cell survival and adaptation under strenuous conditions of hypoxia are the "hypoxia-inducible factors" (HIFs). Together with prolyl hydroxylase domain enzymes (PHDs), HIFs regulates tumor angiogenesis, proliferation, invasion, metastasis, in addition to resistance to radiation and chemotherapy. Additionally, the entire HIF transcription cascade is involved in the "seventh" hallmark of cancer; inflammation. Studies have shown that hypoxia can influence tumor associated immune cells toward assisting in tumor proliferation, differentiation, vessel growth, distant metastasis and suppression of the immune response via cytokine expression alterations. These changes are not necessarily analogous to HIF's role in non-cancer immune responses, where hypoxia often encourages a strong inflammatory response.
Collapse
Affiliation(s)
- Soulafa Mamlouk
- Emmy Noether Research Group and Institute of Pathology, University of Technology, Dresden, Germany
| | | |
Collapse
|
15
|
Nagaraju GP, Aliya S, Zafar SF, Basha R, Diaz R, El-Rayes BF. The impact of curcumin on breast cancer. Integr Biol (Camb) 2012; 4:996-1007. [DOI: 10.1039/c2ib20088k] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA. Tel: +404-778-3558
| | - Sheik Aliya
- Department of Biotechnology, Jawaharlal Nehru Technological University, Hyderabad, AP - 500 085, India
| | - Syed F. Zafar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA. Tel: +404-778-3558
| | - Riyaz Basha
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, FL-32827, USA
| | - Roberto Diaz
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Bassel F. El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA. Tel: +404-778-3558
| |
Collapse
|