1
|
Gandolfi B, Alhaddad H, Abdi M, Bach LH, Creighton EK, Davis BW, Decker JE, Dodman NH, Ginns EI, Grahn JC, Grahn RA, Haase B, Haggstrom J, Hamilton MJ, Helps CR, Kurushima JD, Lohi H, Longeri M, Malik R, Meurs KM, Montague MJ, Mullikin JC, Murphy WJ, Nilson SM, Pedersen NC, Peterson CB, Rusbridge C, Saif R, Shelton GD, Warren WC, Wasim M, Lyons LA. Applications and efficiencies of the first cat 63K DNA array. Sci Rep 2018; 8:7024. [PMID: 29728693 PMCID: PMC5935720 DOI: 10.1038/s41598-018-25438-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array’s genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50–1,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, USA
| | - Hasan Alhaddad
- Department of Biological Sciences, Kuwait University, Safat, Kuwait.
| | - Mona Abdi
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | - Leslie H Bach
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,University of San Francisco, San Francisco, CA, USA
| | - Erica K Creighton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri - Columbia, Columbia, MO, USA
| | - Nicholas H Dodman
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Edward I Ginns
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer C Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Robert A Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Bianca Haase
- Sydney School of Veterinary Science, University of Sydney, Sydney, Australia
| | - Jens Haggstrom
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michael J Hamilton
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Department of Biochemistry, University of California - Riverside, Riverside, CA, USA
| | | | - Jennifer D Kurushima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Foothill College, Los Altos Hills, CA, USA
| | - Hannes Lohi
- Department of Veterinary Biosciences, Research Programs Unit, Molecular Neurology, University of Helsinki, and The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Maria Longeri
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Richard Malik
- Centre for Veterinary Education, University of Sydney, New South Wales, Australia
| | - Kathryn M Meurs
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michael J Montague
- Department of Neuroscience, Parelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Sara M Nilson
- Division of Animal Sciences, University of Missouri - Columbia, Columbia, MO, USA
| | - Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Carlyn B Peterson
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Clare Rusbridge
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Rashid Saif
- Institute of Biotechnology, Gulab Devi Educational Complex, Lahore, Pakistan
| | - G Diane Shelton
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Muhammad Wasim
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, USA.
| |
Collapse
|
2
|
Perelman PL, Pichler R, Gaggl A, Larkin DM, Raudsepp T, Alshanbari F, Holl HM, Brooks SA, Burger PA, Periasamy K. Construction of two whole genome radiation hybrid panels for dromedary (Camelus dromedarius): 5000 RAD and 15000 RAD. Sci Rep 2018; 8:1982. [PMID: 29386528 PMCID: PMC5792482 DOI: 10.1038/s41598-018-20223-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
The availability of genomic resources including linkage information for camelids has been very limited. Here, we describe the construction of a set of two radiation hybrid (RH) panels (5000RAD and 15000RAD) for the dromedary (Camelus dromedarius) as a permanent genetic resource for camel genome researchers worldwide. For the 5000RAD panel, a total of 245 female camel-hamster radiation hybrid clones were collected, of which 186 were screened with 44 custom designed marker loci distributed throughout camel genome. The overall mean retention frequency (RF) of the final set of 93 hybrids was 47.7%. For the 15000RAD panel, 238 male dromedary-hamster radiation hybrid clones were collected, of which 93 were tested using 44 PCR markers. The final set of 90 clones had a mean RF of 39.9%. This 15000RAD panel is an important high-resolution complement to the main 5000RAD panel and an indispensable tool for resolving complex genomic regions. This valuable genetic resource of dromedary RH panels is expected to be instrumental for constructing a high resolution camel genome map. Construction of the set of RH panels is essential step toward chromosome level reference quality genome assembly that is critical for advancing camelid genomics and the development of custom genomic tools.
Collapse
Affiliation(s)
- Polina L Perelman
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
- Institute of Molecular and Cellular Biology and Novosibirsk State University, Novosibirsk, Russia
| | - Rudolf Pichler
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
| | - Anna Gaggl
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| | | | | | | | | | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni, Vienna, Austria
| | - Kathiravan Periasamy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria.
| |
Collapse
|
3
|
Whole-Genome Restriction Mapping by "Subhaploid"-Based RAD Sequencing: An Efficient and Flexible Approach for Physical Mapping and Genome Scaffolding. Genetics 2017; 206:1237-1250. [PMID: 28468906 PMCID: PMC5500127 DOI: 10.1534/genetics.117.200303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
Assembly of complex genomes using short reads remains a major challenge, which usually yields highly fragmented assemblies. Generation of ultradense linkage maps is promising for anchoring such assemblies, but traditional linkage mapping methods are hindered by the infrequency and unevenness of meiotic recombination that limit attainable map resolution. Here we develop a sequencing-based "in vitro" linkage mapping approach (called RadMap), where chromosome breakage and segregation are realized by generating hundreds of "subhaploid" fosmid/bacterial-artificial-chromosome clone pools, and by restriction site-associated DNA sequencing of these clone pools to produce an ultradense whole-genome restriction map to facilitate genome scaffolding. A bootstrap-based minimum spanning tree algorithm is developed for grouping and ordering of genome-wide markers and is implemented in a user-friendly, integrated software package (AMMO). We perform extensive analyses to validate the power and accuracy of our approach in the model plant Arabidopsis thaliana and human. We also demonstrate the utility of RadMap for enhancing the contiguity of a variety of whole-genome shotgun assemblies generated using either short Illumina reads (300 bp) or long PacBio reads (6-14 kb), with up to 15-fold improvement of N50 (∼816 kb-3.7 Mb) and high scaffolding accuracy (98.1-98.5%). RadMap outperforms BioNano and Hi-C when input assembly is highly fragmented (contig N50 = 54 kb). RadMap can capture wide-range contiguity information and provide an efficient and flexible tool for high-resolution physical mapping and scaffolding of highly fragmented assemblies.
Collapse
|
4
|
Li G, Hillier LW, Grahn RA, Zimin AV, David VA, Menotti-Raymond M, Middleton R, Hannah S, Hendrickson S, Makunin A, O'Brien SJ, Minx P, Wilson RK, Lyons LA, Warren WC, Murphy WJ. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination. G3 (BETHESDA, MD.) 2016; 6:1607-16. [PMID: 27172201 PMCID: PMC4889657 DOI: 10.1534/g3.116.028746] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/23/2016] [Indexed: 01/03/2023]
Abstract
High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location.
Collapse
Affiliation(s)
- Gang Li
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843
| | - LaDeana W Hillier
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Robert A Grahn
- College of Veterinary Medicine, University of Missouri-Columbia, Missouri 65201 Population Health and Reproduction, University of California-Davis, California 95616
| | - Aleksey V Zimin
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742
| | - Victor A David
- National Cancer Institute-Frederick, National Institutes of Health, Maryland 21702
| | | | | | - Steven Hannah
- Nestlé Purina PetCare Company, St. Louis, Missouri 63134
| | - Sher Hendrickson
- Department of Biology, Shepherd University, Shepherdstown, West Virginia 25443 Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia
| | - Alex Makunin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia
| | - Stephen J O'Brien
- National Cancer Institute-Frederick, National Institutes of Health, Maryland 21702 Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia
| | - Pat Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Leslie A Lyons
- College of Veterinary Medicine, University of Missouri-Columbia, Missouri 65201 Population Health and Reproduction, University of California-Davis, California 95616
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
5
|
Gandolfi B, Alhaddad H. Investigation of inherited diseases in cats: genetic and genomic strategies over three decades. J Feline Med Surg 2015; 17:405-15. [PMID: 25896240 PMCID: PMC10816245 DOI: 10.1177/1098612x15581133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
PRACTICAL RELEVANCE The health of the cat mirrors a complex interaction between its environment (nurture) and its genetics (nature). To date, over 70 genetic mutations (variants) have been defined in the cat; many involve diseases, structural anomalies, coat color and texture, including numerous that are clinically relevant. This trend will continue as more of the feline genome is deciphered. Genetic testing, and eventually whole-genome sequencing, should become routine diagnostic tools in feline healthcare within the foreseeable future. GLOBAL IMPORTANCE Cat breeds have dispersed around the world. Thus, feline medicine clinicians should be aware of breeds common to their region and common mutations found within those regional populations. Random-bred populations of domestic cats can also have defined genetic characteristics and mutations, which are equally worthy of understanding by feline medicine clinicians. OUTLINE This article reviews the chronology and evolution of genetic and genomic tools pertinent to feline medicine. Possible strategies for mapping genetic traits and defects, and how these impact on feline health, are also discussed. The focus is on three historical periods: (1) research conducted before the availability of the cat genome; (2) research performed immediately after the availability of sequences of the cat genome; and (3) current research that goes beyond one cat genome and utilizes the genome sequences of many cats. EVIDENCE BASE The data presented are extracted from peer-reviewed publications pertaining to mutation identification, and relevant articles concerning heritable traits and/or diseases. The authors draw upon their personal experience and expertise in feline genetics.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, W106 Vet Med Building, 1600 E Rollins St, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Hasan Alhaddad
- College of Science, Department of Biological Sciences, Kuwait University, Safat, 13060, Kuwait
| |
Collapse
|
6
|
Montague MJ, Li G, Gandolfi B, Khan R, Aken BL, Searle SMJ, Minx P, Hillier LW, Koboldt DC, Davis BW, Driscoll CA, Barr CS, Blackistone K, Quilez J, Lorente-Galdos B, Marques-Bonet T, Alkan C, Thomas GWC, Hahn MW, Menotti-Raymond M, O'Brien SJ, Wilson RK, Lyons LA, Murphy WJ, Warren WC. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc Natl Acad Sci U S A 2014; 111:17230-5. [PMID: 25385592 PMCID: PMC4260561 DOI: 10.1073/pnas.1410083111] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae.
Collapse
Affiliation(s)
- Michael J Montague
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108
| | - Gang Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843
| | - Barbara Gandolfi
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65201
| | - Razib Khan
- Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Bronwen L Aken
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | | | - Patrick Minx
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108
| | - LaDeana W Hillier
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108
| | - Daniel C Koboldt
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843
| | - Carlos A Driscoll
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20886
| | - Christina S Barr
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20886
| | - Kevin Blackistone
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20886
| | - Javier Quilez
- Catalan Institution for Research and Advanced Studies, Institute of Evolutionary Biology, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Belen Lorente-Galdos
- Catalan Institution for Research and Advanced Studies, Institute of Evolutionary Biology, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Tomas Marques-Bonet
- Catalan Institution for Research and Advanced Studies, Institute of Evolutionary Biology, Pompeu Fabra University, 08003 Barcelona, Spain; Centro de Analisis Genomico 08028, Barcelona, Spain
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
| | - Gregg W C Thomas
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405
| | | | - Stephen J O'Brien
- Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199178, Russia; and Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL 33314
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65201;
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843;
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108;
| |
Collapse
|
7
|
Gandolfi B, Alhaddad H, Affolter VK, Brockman J, Haggstrom J, Joslin SEK, Koehne AL, Mullikin JC, Outerbridge CA, Warren WC, Lyons LA. To the Root of the Curl: A Signature of a Recent Selective Sweep Identifies a Mutation That Defines the Cornish Rex Cat Breed. PLoS One 2013; 8:e67105. [PMID: 23826204 PMCID: PMC3694948 DOI: 10.1371/journal.pone.0067105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022] Open
Abstract
The cat (Felis silvestris catus) shows significant variation in pelage, morphological, and behavioral phenotypes amongst its over 40 domesticated breeds. The majority of the breed specific phenotypic presentations originated through artificial selection, especially on desired novel phenotypic characteristics that arose only a few hundred years ago. Variations in coat texture and color of hair often delineate breeds amongst domestic animals. Although the genetic basis of several feline coat colors and hair lengths are characterized, less is known about the genes influencing variation in coat growth and texture, especially rexoid – curly coated types. Cornish Rex is a cat breed defined by a fixed recessive curly coat trait. Genome-wide analyses for selection (di, Tajima’s D and nucleotide diversity) were performed in the Cornish Rex breed and in 11 phenotypically diverse breeds and two random bred populations. Approximately 63K SNPs were used in the analysis that aimed to localize the locus controlling the rexoid hair texture. A region with a strong signature of recent selective sweep was identified in the Cornish Rex breed on chromosome A1, as well as a consensus block of homozygosity that spans approximately 3 Mb. Inspection of the region for candidate genes led to the identification of the lysophosphatidic acid receptor 6 (LPAR6). A 4 bp deletion in exon 5, c.250_253_delTTTG, which induces a premature stop codon in the receptor, was identified via Sanger sequencing. The mutation is fixed in Cornish Rex, absent in all straight haired cats analyzed, and is also segregating in the German Rex breed. LPAR6 encodes a G protein-coupled receptor essential for maintaining the structural integrity of the hair shaft; and has mutations resulting in a wooly hair phenotype in humans.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
- * E-mail:
| | - Hasan Alhaddad
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| | - Verena K. Affolter
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| | - Jeffrey Brockman
- Hill’s Pet Nutrition Center, Topeka, Kansas, United States of America
| | - Jens Haggstrom
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Shannon E. K. Joslin
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| | - Amanda L. Koehne
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| | - James C. Mullikin
- Comparative Genomics Unit, Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Catherine A. Outerbridge
- Department of Veterinary Medicine & Epidemiology, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| | - Wesley C. Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Leslie A. Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America
| |
Collapse
|
8
|
Alhaddad H, Khan R, Grahn RA, Gandolfi B, Mullikin JC, Cole SA, Gruffydd-Jones TJ, Häggström J, Lohi H, Longeri M, Lyons LA. Extent of linkage disequilibrium in the domestic cat, Felis silvestris catus, and its breeds. PLoS One 2013; 8:e53537. [PMID: 23308248 PMCID: PMC3538540 DOI: 10.1371/journal.pone.0053537] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/03/2012] [Indexed: 01/21/2023] Open
Abstract
Domestic cats have a unique breeding history and can be used as models for human hereditary and infectious diseases. In the current era of genome-wide association studies, insights regarding linkage disequilibrium (LD) are essential for efficient association studies. The objective of this study is to investigate the extent of LD in the domestic cat, Felis silvestris catus, particularly within its breeds. A custom illumina GoldenGate Assay consisting of 1536 single nucleotide polymorphisms (SNPs) equally divided over ten 1 Mb chromosomal regions was developed, and genotyped across 18 globally recognized cat breeds and two distinct random bred populations. The pair-wise LD descriptive measure (r2) was calculated between the SNPs in each region and within each population independently. LD decay was estimated by determining the non-linear least-squares of all pair-wise estimates as a function of distance using established models. The point of 50% decay of r2 was used to compare the extent of LD between breeds. The longest extent of LD was observed in the Burmese breed, where the distance at which r2 ≈ 0.25 was ∼380 kb, comparable to several horse and dog breeds. The shortest extent of LD was found in the Siberian breed, with an r2 ≈ 0.25 at approximately 17 kb, comparable to random bred cats and human populations. A comprehensive haplotype analysis was also conducted. The haplotype structure of each region within each breed mirrored the LD estimates. The LD of cat breeds largely reflects the breeds’ population history and breeding strategies. Understanding LD in diverse populations will contribute to an efficient use of the newly developed SNP array for the cat in the design of genome-wide association studies, as well as to the interpretation of results for the fine mapping of disease and phenotypic traits.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Razib Khan
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Robert A. Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - James C. Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shelley A. Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Timothy J. Gruffydd-Jones
- The Feline Centre, School of Veterinary Science, University of Bristol, Langford, Bristol, United Kingdom
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hannes Lohi
- Department of Veterinary Biosciences, Research Programs Unit, Molecular Medicine, University of Helsinki, and The Folkhälsan Research Center, Helsinki, Finland
| | - Maria Longeri
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università di Milano, Milano, Italy
| | - Leslie A. Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|