1
|
Karyotype diversity suggests that Laonastes aenigmamus (Laotian rock rat) (Rodentia, Diatomyidae) is a multi-specific genus. Chromosome Res 2016; 24:379-92. [PMID: 27193170 DOI: 10.1007/s10577-016-9527-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/18/2022]
Abstract
Laonastes aenigmamus (Khanyou) is a recently described rodent species living in geographically separated limestone formations of the Khammuan Province in Lao PDR. Chromosomes of 21 specimens of L. aenigmamus were studied using chromosome banding as well as fluorescent in situ hybridization (FISH) techniques using human painting, telomere repeats, and 28S rDNA probes. Four different karyotypes were established. Study with human chromosome paints and FISH revealed that four large chromosomes were formed by multiple common tandem fusions, with persistence of some interstitial telomeres. The rearrangements separating the different karyotypes (I to IV) were also reconstructed. Various combinations of Robertsonian translocations or tandem fusions involving the same chromosomes differentiate these karyotypes. These rearrangements create a strong gametic barrier, which isolates specimens with karyotype II from the others. C-banding and FISH with telomere repeats also exhibit large and systematized differences between karyotype II and others. These data indicate an ancient reproductive separation and suggest that Laonastes is not a mono-specific genus.
Collapse
|
2
|
Romanenko SA, Perelman PL, Trifonov VA, Serdyukova NA, Li T, Fu B, O’Brien PCM, Ng BL, Nie W, Liehr T, Stanyon R, Graphodatsky AS, Yang F. A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans. PLoS One 2015; 10:e0127937. [PMID: 26010445 PMCID: PMC4444286 DOI: 10.1371/journal.pone.0127937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents.
Collapse
Affiliation(s)
- Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail: (SAR); (FY)
| | - Polina L. Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir A. Trifonov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Tangliang Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Patricia C. M. O’Brien
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Bee L. Ng
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics and Anthropology, Jena, Germany
| | - Roscoe Stanyon
- Department of Biology, University of Florence, Florence, Italy
| | - Alexander S. Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
- * E-mail: (SAR); (FY)
| |
Collapse
|