1
|
Pecenková T, Markovic V, Sabol P, Kulich I, Žárský V. Exocyst and autophagy-related membrane trafficking in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:47-57. [PMID: 29069430 DOI: 10.1093/jxb/erx363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Endomembrane traffic in eukaryotic cells functions partially as a means of communication; delivery of membrane in one direction has to be balanced with a reduction at the other end. This effect is typically the case during the defence against pathogens. To combat pathogens, cellular growth and differentiation are suppressed, while endomembrane traffic is poised towards limiting the pathogen attack. The octameric exocyst vesicle-tethering complex was originally discovered as a factor facilitating vesicle-targeting and vesicle-plasma membrane (PM) fusion during exocytosis prior to and possibly during SNARE complex formation. Interestingly, it was recently implicated both in animals and plants in autophagy membrane traffic. In animal cells, the exocyst is integrated into the mTOR-regulated energy metabolism stress/starvation pathway, participating in the formation and especially initiation of an autophagosome. In plants, the first functional link was to autophagy-related anthocyanin import to the vacuole and to starvation. In this concise review, we summarize the current knowledge of exocyst functions in autophagy and defence in plants that might involve unconventional secretion and compare it with animal conditions. Formation of different exocyst complexes during undisturbed cell growth, as opposed to periods of cellular stress reactions involving autophagy, might contribute to the coordination of endomembrane trafficking pathways.
Collapse
Affiliation(s)
- Tamara Pecenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Charles University in Prague, Faculty of Science, Czech Republic
| | - Vedrana Markovic
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Charles University in Prague, Faculty of Science, Czech Republic
| | - Peter Sabol
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Charles University in Prague, Faculty of Science, Czech Republic
| | - Ivan Kulich
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Charles University in Prague, Faculty of Science, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Charles University in Prague, Faculty of Science, Czech Republic
| |
Collapse
|
2
|
Tanaka T, Goto K, Iino M. Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. J Cell Physiol 2016; 232:939-957. [DOI: 10.1002/jcp.25619] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| |
Collapse
|
3
|
Lee AJ, Polgar N, Napoli JA, Lui VH, Tamashiro KK, Fujimoto BA, Thompson KS, Fogelgren B. Fibroproliferative response to urothelial failure obliterates the ureter lumen in a mouse model of prenatal congenital obstructive nephropathy. Sci Rep 2016; 6:31137. [PMID: 27511831 PMCID: PMC4980620 DOI: 10.1038/srep31137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/12/2016] [Indexed: 01/02/2023] Open
Abstract
Congenital obstructive nephropathy (CON) is the most prevalent cause of pediatric chronic kidney disease and end-stage renal disease. The ureteropelvic junction (UPJ) region, where the renal pelvis transitions to the ureter, is the most commonly obstructed site in CON. The underlying causes of congenital UPJ obstructions remain poorly understood, especially when they occur in utero, in part due to the lack of genetic animal models. We previously showed that conditional inactivation of Sec10, a central subunit of the exocyst complex, in the epithelial cells of the ureter and renal collecting system resulted in late gestational bilateral UPJ obstructions with neonatal anuria and death. In this study, we show that without Sec10, the urothelial progenitor cells that line the ureter fail to differentiate into superficial cells, which are responsible for producing uroplakin plaques on the luminal surface. These Sec10-knockout urothelial cells undergo cell death by E17.5 and the urothelial barrier becomes leaky to luminal fluid. Also at E17.5, we measured increased expression of TGFβ1 and genes associated with myofibroblast activation, with evidence of stromal remodeling. Our findings support the model that a defective urothelial barrier allows urine to induce a fibrotic wound healing mechanism, which may contribute to human prenatal UPJ obstructions.
Collapse
Affiliation(s)
- Amanda J Lee
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Josephine A Napoli
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Vanessa H Lui
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Kadee-Kalia Tamashiro
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Brent A Fujimoto
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Karen S Thompson
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, USA
| |
Collapse
|