1
|
Arora P, Nainwal LM, Gupta G, Singh SK, Chellappan DK, Oliver BG, Dua K. Orally administered solasodine, a steroidal glycoalkaloid, suppresses ovalbumin-induced exaggerated Th2-immune response in rat model of bronchial asthma. Chem Biol Interact 2022; 366:110138. [PMID: 36084726 DOI: 10.1016/j.cbi.2022.110138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
Bronchial asthma is a chronic lung disorder, that affects an estimated 262 million people worldwide, thereby, causing a large socio-economic burden. Drug molecules from natural sources have exhibited a good promise in providing an alternative therapy in many chronic ailments. Solasodine, a glycoalkaloid has received an immense interest due to its large pharmacological and industrial value, however, its usefulness in asthma control has not been investigated till date. In this work, solasodine was tested for its ability to reverse several characteristics of bronchial asthma induced by intraperitoneal injection of ovalbumin (OVA) and aluminium hydroxide in experimental rats. Treating asthmatic animals with solasodine (1 mg/kg b.w. or 10 mg/kg b.w.) or dexamethasone (2.5 mg/kg b.w.) reversed OVA-induced airway hyperresponsiveness, infiltration of inflammatory cells and histamine levels in the airways. Furthermore, as compared to OVA-control rats, allergen-induced elevated levels of IgE, nitrites, nitric oxide, and pro-inflammatory mediators, including TNF-α, IL-1β, LTD-4, and Th2-cytokines, particularly, IL-4, IL-5 were remarkably reduced in both bronchoalveolar lavage fluid and blood. These findings are supported by significant protection offered by various treatments against OVA-induced airway inflammation and mast cell degranulation in mesenteric tissues. Further, In-silico molecular docking studies performed to determine inhibitory potential of solasodine at IL-4 and IL-5, demonstrated strong affinity of phytocompound for these receptors than observed with antagonists previously reported. Results of current study imply that solasodine has therapeutic promise in allergic asthma, presumably due to its ability to prevent mast cell degranulation and consequent generation of histamine and Th2-associated cytokines in airways.
Collapse
Affiliation(s)
- Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India.
| | - Lalit Mohan Nainwal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; School of Medical & Allied Sciences, G. D. Goenka University, Sohna Road, Gurugram, Haryana, India.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo 2007, NSW, Australia.
| |
Collapse
|
2
|
Protić-Rosić I, Nešić A, Lukić I, Miljković R, Popović DM, Atanasković-Marković M, Stojanović M, Gavrović-Jankulović M. Recombinant Bet v 1-BanLec chimera modulates functional characteristics of peritoneal murine macrophages by promoting IL-10 secretion. Mol Immunol 2021; 138:58-67. [PMID: 34364073 DOI: 10.1016/j.molimm.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
Allergen-specific immunotherapy (AIT) is a desensitizing treatment for allergic diseases that corrects the underlined pathological immune response to innocuous protein antigens, called allergens. Recombinant allergens employed in the AIT allowed the production of well-defined formulations that possessed consistent quality but were often less efficient than natural allergen extracts. Combining recombinant allergens with an adjuvant or immunomodulatory agent could improve AIT efficacy. This study aimed to perform structural and functional characterization of newly designed recombinant chimera composed of the Bet v 1, the major birch pollen allergen, and Banana Lectin (BanLec), TLR2, and CD14 binding protein, for the application in AIT. rBet v 1-BanLec chimera was designed in silico and expressed as a soluble fraction in Escherichia coli. Purified rBet v 1-BanLec (33.4 kDa) retained BanLec-associated biological activity of carbohydrate-binding and preserved IgE reactive epitopes of Bet v 1. The chimera revealed secondary structures with predominant β sheets. The immunomodulatory capacity of rBet v 1-BanLec tested on macrophages showed changes in myeloperoxidase activity, reduced NO production, and significant alterations in the production of cytokines when compared to both rBanLec and rBet v 1. Comparing to rBet v 1, rBet v 1-BanLec was demonstrated to be more efficient promoter of IL-10 production as well as weaker inducer of NO production and secretion of pro-inflammatory cytokines TNFα, and IL-6. The ability of rBet v 1-BanLec to promote IL-10 in together with the preserved 3D structure of Bet v 1 part implies that the construct might exert a beneficial effect in the allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Isidora Protić-Rosić
- Department of Biochemistry, Faculty of Chemistry University of Belgrade, Belgrade, Serbia
| | - Andrijana Nešić
- Department of Biochemistry, Faculty of Chemistry University of Belgrade, Belgrade, Serbia
| | - Ivana Lukić
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, Belgrade, Serbia
| | - Radmila Miljković
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, Belgrade, Serbia
| | - Dragan M Popović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Marina Atanasković-Marković
- Department of Allergology and Pulmonology, University Children's Hospital, Medical Faculty University of Belgrade, Belgrade, Serbia
| | - Marijana Stojanović
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, Belgrade, Serbia
| | | |
Collapse
|
3
|
Kim SM, Ryu HW, Kwon OK, Hwang D, Kim MG, Min JH, Zhang Z, Kim SY, Paik JH, Oh SR, Ahn KS, Lee JW. Callicarpa japonica Thunb. ameliorates allergic airway inflammation by suppressing NF-κB activation and upregulating HO-1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113523. [PMID: 33129947 DOI: 10.1016/j.jep.2020.113523] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Callicarpa japonica Thunb., as an herbal medicine has been used for the treatment of inflammatory diseases in China and Korea. MATERIALS AND METHODS Ultra performance liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometer (UPLC-PDA-QTof MS) was used to detect the major phenylethanoid glycosides in the C. japonica extract. BALB/c mice were intraperitoneally sensitized by ovalbumin (OVA) (on days 0 and 7) and challenged by OVA aerosol (on days 11-13) to induce airway inflammatory response. The mice were also administered with C. japonica Thunb. (CJT) (20 and 40 mg/kg Per oral) on days 9-13. CJT pretreatment was conducted in lipopolysaccharide (LPS)-stimulated RAW264.7 or phorbol 12-myristate 13-acetate (PMA)-stimulated A549 cells. RESULTS CJT administration significantly reduced the secretion of Th2 cytokines, TNF-α, IL-6, immunoglobulin E (IgE) and histamine, and the recruitment of eosinophils in an OVA-exposed mice. In histological analyses, the amelioration of inflammatory cell influx and mucus secretion were observed with CJT. The OVA-induced airway hyperresponsiveness (AHR), iNOS expression and NF-κB activation were effectively suppressed by CJT administration. In addition, CJT led to the upregulation of HO-1 expression. In an in vitro study, CJT pretreatment suppressed the LPS-induced TNF-α secretion in RAW264.7 cells and attenuated the PMA-induced IL-6, IL-8 and MCP-1 secretion in A549 cells. These effects were accompanied by downregulated NF-κB phosphorylation and by upregulated HO-1 expression. CONCLUSION These results suggested that CJT has protective activity against OVA-induced airway inflammation via downregulation of NF-κB activation and upregulation of HO-1, suggesting that CJT has preventive potential for the development of allergic asthma.
Collapse
Affiliation(s)
- Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea.
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Daseul Hwang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Min Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Zhiyun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, PR China.
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| |
Collapse
|
4
|
Endomorphin-2- and Neurotensin- Based Chimeric Peptide Attenuates Airway Inflammation in Mouse Model of Nonallergic Asthma. Int J Mol Sci 2019; 20:ijms20235935. [PMID: 31779093 PMCID: PMC6929018 DOI: 10.3390/ijms20235935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
We examined anti-inflammatory potency of hybrid peptide-PK20, composed of neurotensin (NT) and endomorphin-2 (EM-2) pharmacophores in a murine model of non-atopic asthma induced by skin sensitization with 2,4-dinitrofluorobenzene and intratracheal challenge of cognate hapten. Mice received intraperitoneally PK20, equimolar mixture of its structural elements (MIX), dexamethasone (DEX), or NaCl. Twenty-four hours following hapten challenge, the measurements of airway responsiveness to methacholine were taken. Bronchoalveolar lavage (BALF) and lungs were collected for further analyses. Treatment with PK20, similarly to dexamethasone, reduced infiltration of inflammatory cells, concentration of mouse mast cell protease, IL-1β, IL-12p40, IL-17A, CXCL1, RANTES in lungs and IL-1α, IL-2, IL-13, and TNF-α in BALF. Simple mixture of NT and EM-2 moieties was less potent. PK20, DEX, and MIX significantly decreased malondialdehyde level and secretory phospholipase 2 activity in lungs. Intensity of NF-κB immunoreactivity was diminished only after PK20 and DEX treatments. Neither PK20 nor mixture of its pharmacophores were as effective as DEX in alleviating airway hyperresponsiveness. PK20 effectively inhibited hapten-induced inflammation and mediator and signaling pathways in a manner seen with dexamethasone. Improved anti-inflammatory potency of the hybrid over the mixture of its moieties shows its preponderance and might pose a promising tool in modulating inflammation in asthma.
Collapse
|
5
|
Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol 2019; 46:101333. [PMID: 31703832 DOI: 10.1016/j.smim.2019.101333] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
Asthma is a chronic airway disease, which affects more than 300 million people. The pathogenesis of asthma exhibits marked heterogeneity with many phenotypes defining visible characteristics and endotypes defining molecular mechanisms. With the evolution of novel biological therapies, patients, who do not-respond to conventional asthma therapy require novel biologic medications, such as anti-IgE, anti-IL-5 and anti-IL4/IL13 to control asthma symptoms. It is increasingly important for physicians to understand immunopathology of asthma and to characterize asthma phenotypes. Asthma is associated with immune system activation, airway hyperresponsiveness (AHR), epithelial cell activation, mucus overproduction and airway remodeling. Both innate and adaptive immunity play roles in immunologic mechanisms of asthma. Type 2 asthma with eosinophilia is a common phenotype in asthma. It occurs with and without visible allergy. The type 2 endotype comprises; T helper type 2 (Th2) cells, type 2 innate lymphoid cells (ILC2), IgE-secreting B cells and eosinophils. Eosinophilic nonallergic asthma is ILC2 predominated, which produces IL-5 to recruit eosinophil into the mucosal airway. The second major subgroup of asthma is non-type 2 asthma, which contains heterogeneous group of endoypes and phenotypes, such as exercise-induced asthma, obesity induced asthma, etc. Neutrophilic asthma is not induced by allergens but can be induced by infections, cigarette smoke and pollution. IL-17 which is produced by Th17 cells and type 3 ILCs, can stimulate neutrophilic airway inflammation. Macrophages, dendritic cells and NKT cells are all capable of producing cytokines that are known to contribute in allergic and nonallergic asthma. Bronchial epithelial cell activation and release of cytokines, such as IL-33, IL-25 and TSLP play a major role in asthma. Especially, allergens or environmental exposure to toxic agents, such as pollutants, diesel exhaust, detergents may affect the epithelial barrier leading to asthma development. In this review, we focus on the immunologic mechanism of heterogenous asthma phenotypes.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Allergy and Clinical Immunology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Zeynep Celebi Sözener
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland; Ankara University School of Medicine, Department of Chest Diseases Division of Clinical Immunology and Allergic Diseases, Ankara, Turkey
| | - Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| |
Collapse
|
6
|
Saik OV, Demenkov PS, Ivanisenko TV, Bragina EY, Freidin MB, Goncharova IA, Dosenko VE, Zolotareva OI, Hofestaedt R, Lavrik IN, Rogaev EI, Ivanisenko VA. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med Genomics 2018; 11:15. [PMID: 29504915 PMCID: PMC6389037 DOI: 10.1186/s12920-018-0331-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hypertension and bronchial asthma are a major issue for people's health. As of 2014, approximately one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235-330 million people globally have been affected by asthma and approximately 250,000-345,000 people have died each year from the disease. The development of the effective treatment therapies against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be useful for genotyping and identifying new drug targets. RESULTS Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638 interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes is enriched with apoptotic genes and genes involved in biological processes related to the functioning of central nervous system. CONCLUSIONS The application of methods of reconstruction and analysis of gene networks is a productive tool for studying the molecular mechanisms of comorbid conditions. The method put forth to rank genes by their importance to the comorbid condition of asthma and hypertension was employed that resulted in prediction of 10 genes, playing the key role in the development of the comorbid condition. The results can be utilised to plan experiments for identification of novel candidate genes along with searching for novel pharmacological targets.
Collapse
Affiliation(s)
- Olga V. Saik
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel S. Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Timofey V. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena Yu Bragina
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Maxim B. Freidin
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | | | | | - Olga I. Zolotareva
- Bielefeld University, International Research Training Group “Computational Methods for the Analysis of the Diversity and Dynamics of Genomes”, Bielefeld, Germany
| | - Ralf Hofestaedt
- Bielefeld University, Technical Faculty, AG Bioinformatics and Medical Informatics, Bielefeld, Germany
| | - Inna N. Lavrik
- Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Evgeny I. Rogaev
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- University of Massachusetts Medical School, Worcester, MA USA
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Center for Genetics and Genetic Technologies, Faculty of Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Hamzaoui A, Berraies A, Kaabachi W, Haifa M, Ammar J, Kamel H. Induced sputum levels of IL-33 and soluble ST2 in young asthmatic children. J Asthma 2013; 50:803-9. [PMID: 23855553 DOI: 10.3109/02770903.2013.816317] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Interleukin-33 is an IL-1 family cytokine which signals via its T1/ST2 receptor, and acts as a key regulator of inflammation, notably the type-2 response implicated in asthma. This study aims to measure the expression of soluble ST2 (sST2) and IL-33 in asthmatic children, depending on disease activity. METHODS Thirty-seven children with well-defined asthma (20 moderate and 17 mild asthmatics) were studied. IL-33 and sST2 were measured by ELISA in serum and induced sputum (IS) samples, and compared with 22 age- and sex-matched healthy controls. Real-time quantitative PCR was used to determine IL-33 and TNF-α mRNA expression in IS. RESULTS sST2 and IL-33 levels in IS and serum were significantly higher in patients compared with healthy controls (p = 0.0001). The increase in sST2 and IL33 was significantly more important in moderate cases than in mild asthma. A significant correlation was observed between serum and IS IL-33 levels (r = 0.497; p = 0.0018). Higher levels of IL-33 mRNA were detected in IS from asthmatics than those observed in controls. A significant correlation was found between TNF-α and IL-33 mRNA expression in the asthmatic subjects (r = 0.772, p = 0.0001). CONCLUSIONS Values of sST2 and IL-33 observed in IS were found to correlate with disease activity. Elevated IL-33 mRNA expression in IS and its correlation with TNF-α reflected the inflammatory process observed in the lung of young asthmatics.
Collapse
Affiliation(s)
- Agnes Hamzaoui
- Hospital A. Mami, Department of respiratory diseases, Pavillon B
| | | | | | | | | | | |
Collapse
|