1
|
Yu F, Chen J, Wang X, Cai Q, Luo J, Wang L, Chen K, He Y. Establishment of a novel mouse peritoneal dialysis-associated peritoneal injury model. Clin Exp Nephrol 2022; 26:649-658. [PMID: 35353282 DOI: 10.1007/s10157-022-02208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Peritoneal fibrosis induced by various factors during peritoneal dialysis (PD) can eventually lead to ultrafiltration failure and termination of PD treatment. The existing animal models are caused by a single stimulus, and cannot accurately simulate complex pathogenesis of peritoneal injury and fibrosis. We aim to develop an efficient and realistic mouse model of PD-associated peritoneal injury using daily intraperitoneal injection (I.P.) of human peritonitis PD effluent. METHODS Eight-week-old male C57BL/6 mice were classified into six groups: saline control; 2.5% PD fluid; 2.5% PD fluid + lipopolysaccharide (LPS); 4.25% PD fluid; 4.25% PD fluid + LPS; and peritonitis effluent. Mice received daily I.P. for 6 weeks, and were sacrificed to determine peritoneal structural and functional damage, inflammation, and fibrosis. RESULTS Mice in the peritonitis effluent group had low mortality. The submesothelial thickness in the peritonitis effluent group was significantly greater than that in the 2.5% PD fluid group. The peritonitis effluent group had increased expression of fibrosis markers (α-SMA, Collagen I, etc.), neutrophil granulocytes (MPO), and macrophages (CD68, F4/80) in the peritoneum based on immunohistochemical staining; and significantly higher expression of inflammation markers (IL-1β, IL-6, etc.) and fibrosis markers (TGF-β1, α-SMA, etc.) based on real-time qPCR. Modified peritoneal equilibration tests (PET) demonstrated that I.P. of peritonitis effluent reduced peritoneal ultrafiltration. CONCLUSION Our novel animal model of PD-associated peritoneal injury faithfully simulates the clinical pathophysiological process. This animal model may be useful for study of the pathogenesis of PD-associated peritoneal injury and identification of novel treatments.
Collapse
Affiliation(s)
- Fang Yu
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Xiaoyue Wang
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Qingli Cai
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Jia Luo
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Liming Wang
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China.
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, No. 10 Changjiang Road, Chongqing, 400042, China.
| |
Collapse
|
2
|
Yang CY, Chang PY, Chen JY, Wu BS, Yang AH, Lee OKS. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem Cell Res Ther 2021; 12:193. [PMID: 33741073 PMCID: PMC7977319 DOI: 10.1186/s13287-021-02270-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Life-long peritoneal dialysis (PD) as a renal replacement therapy is limited by peritoneal fibrosis. Previous studies showed immunomodulatory and antifibrotic effects of adipose-derived mesenchymal stem cells (ADSCs) on peritoneal fibrosis. However, the role of the peritoneal macrophage in this process remains uninvestigated. Methods We examined the therapeutic effects of ADSC and bone marrow-derived mesenchymal stem cells (BM-MSC) in the rat model of dialysis-induced peritoneal fibrosis using methylglyoxal. In addition, treatment of macrophages with the conditioned medium of ADSC and BM-MSC was performed individually to identify the beneficial component of the stem cell secretome. Results In the in vivo experiments, we found dialysis-induced rat peritoneal fibrosis was attenuated by both ADSC and BM-MSC. Interestingly, ADSC possessed a more prominent therapeutic effect than BM-MSC in ameliorating peritoneal membrane thickening while also upregulating epithelial cell markers in rat peritoneal tissues. The therapeutic effects of ADSC were positively associated with M2 macrophage polarization. In the in vitro experiments, we confirmed that interleukin-6 (IL-6) secreted by MSCs upon transforming growth factor-β1 stimulation promotes M2 macrophage polarization. Conclusions In dialysis-induced peritoneal fibrosis, MSCs are situated in an inflammatory environment of TGF-β1 and secrete IL-6 to polarize macrophages into the M2 phenotype. Our findings reveal a previously unidentified role of tissue macrophage in this antifibrotic process. ADSC has the advantage of abundance and accessibility, making the application values extremely promising. Graphical abstract In dialysis-induced peritoneal fibrosis, peritoneal mesothelial cells secrete transforming growth factor-β1 (TGF-β1) when exposed to methylglyoxal (MGO)-containing peritoneal dialysate. When situated in TGF-β1, the inflammatory environment induces mesenchymal stem cells to secrete interleukin-6 (IL-6), IL-6 polarizes macrophages into the M2 phenotype. The dominant peritoneal tissue M2 macrophages, marked by upregulated Arg-1 expression, account for the attenuation of MGO-induced dedifferentiation of peritoneal mesothelial cells to maintain epithelial integrity.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02270-4.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu, 30010, Taiwan.
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Jun-Yi Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Bo-Sheng Wu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Pathology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Orthopedics, China Medical University Hospital, Taichung, 40447, Taiwan
| |
Collapse
|
3
|
Yang CY, Chau YP, Chen A, Lee OKS, Tarng DC, Yang AH. Targeting cannabinoid signaling for peritoneal dialysis-induced oxidative stress and fibrosis. World J Nephrol 2017; 6:111-118. [PMID: 28540200 PMCID: PMC5424432 DOI: 10.5527/wjn.v6.i3.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Long-term exposure to bioincompatible peritoneal dialysis (PD) solutions frequently results in peritoneal fibrosis and ultrafiltration failure, which limits the life-long use of and leads to the cessation of PD therapy. Therefore, it is important to elucidate the pathogenesis of peritoneal fibrosis in order to design therapeutic strategies to prevent its occurrence. Peritoneal fibrosis is associated with a chronic inflammatory status as well as an elevated oxidative stress (OS) status. Beyond uremia per se, OS also results from chronic exposure to high glucose load, glucose degradation products, advanced glycation end products, and hypertonic stress. Therapy targeting the cannabinoid (CB) signaling pathway has been reported in several chronic inflammatory diseases with elevated OS. We recently reported that the intra-peritoneal administration of CB receptor ligands, including CB1 receptor antagonists and CB2 receptor agonists, ameliorated dialysis-related peritoneal fibrosis. As targeting the CB signaling pathway has been reported to be beneficial in attenuating the processes of several chronic inflammatory diseases, we reviewed the interaction among the cannabinoid system, inflammation, and OS, through which clinicians ultimately aim to prolong the peritoneal survival of PD patients.
Collapse
|
5
|
Ditsawanon P, Aramwit P. Preserving the peritoneal membrane in long-term peritoneal dialysis patients. J Clin Pharm Ther 2015; 40:508-516. [PMID: 26280248 DOI: 10.1111/jcpt.12318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Peritoneal dialysis (PD) has been widely used by patients with end-stage renal disease. However, chronic exposure of the peritoneal membrane to bioincompatible PD solutions, and peritonitis and uraemia during long-term dialysis result in peritoneal membrane injury and thereby contribute to membrane changes, ultrafiltration (UF) failure, inadequate dialysis and technical failure. Therefore, preserving the peritoneal membrane is important to maintain the efficacy of PD. This article reviews the current literature on therapeutic agents for preserving the peritoneal membrane. METHODS A literature search of PubMed was conducted using the search terms peritoneal fibrosis, peritoneal sclerosis, membrane, integrity, preserve, therapy and peritoneal dialysis, but not including peritonitis. Published clinical trials, in vitro studies, experimental trials in animal models, meta-analyses and review articles were identified and reviewed for relevance. RESULTS AND DISCUSSION We focus on understanding how factors cause peritoneal membrane changes, the characteristics and mechanisms of peritoneal membrane changes in patients undergoing PD and the types of therapeutic agents for peritoneal membrane preservation. There have been many investigations into the preservation of the peritoneal membrane, including PD solution improvement, the inhibition of cytokine and growth factor expression using renin-angiotensin-aldosterone system (RAAS) blockade, glycosaminoglycans (GAGs), L-carnitine and taurine additives. In addition, there are potential future therapeutic agents that are still in experimental investigations. WHAT IS NEW AND CONCLUSION The efficacy of many of the therapeutic agents is uncertain because there are insufficient good-quality clinical studies. Overall membrane preservation and patient survival remain unproven in using more biocompatible PD solutions. With RAAS blockade, results are still inconclusive, as many of the clinical studies were retrospective. With GAGs, L-carnitine and taurine additives, there is no sufficiently long follow-up clinical study with a large sample size to support its efficacy. Therefore, better quality clinical studies within this area should be performed.
Collapse
Affiliation(s)
- P Ditsawanon
- Bioactive Resources for Innovative Clinical Applications Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - P Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Wang J, Liu S, Li H, Sun J, Zhang S, Xu X, Liu Y, Wang Y, Miao L. A review of rodent models of peritoneal dialysis and its complications. Int Urol Nephrol 2014; 47:209-15. [PMID: 25425436 DOI: 10.1007/s11255-014-0829-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
Abstract
This article reviews the available rodent models of peritoneal dialysis (PD) that have been developed over the past 20 years and the complications associated with their use. Although there are several methods used in different studies, the focus of this article is not to review or provide detailed summaries of these methods. Rather, this article reviews the most common methods of establishing a dialysis model in rodents, the assays used to observe function of the peritoneum in dialysis, and how these models are adapted to study peritonitis and peritoneal fibrosis. We compared the advantages and disadvantages of different methods, which should be helpful in studies of PD and may provide valuable data for further clinical studies.
Collapse
Affiliation(s)
- Ji Wang
- Department of Nephrology, Second Hospital of Jilin University, Ziqiang Street 218, Nanguan District, Changchun, China
| | | | | | | | | | | | | | | | | |
Collapse
|