1
|
Chen X, Shen B, Cao X, Xiang F, Zou J, Ding X. Acute effect of one session of hemodiafiltration with endogenous reinfusion on uremic toxins and inflammatory mediators. Int J Artif Organs 2020; 43:437-443. [PMID: 31942823 DOI: 10.1177/0391398819899102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aims: To investigate the acute effects of hemodiafiltration with endogenous infusion on the elimination of uremic toxins and inflammatory mediators in patients with end-stage renal disease. Materials and methods: A total of 37 end-stage renal disease patients undergoing chronic hemodialysis received a single hemodiafiltration with endogenous infusion dialysis treatment. The acute effects of one hemodiafiltration with endogenous infusion session on uremic toxins and inflammatory mediators were assessed by comparing the pre- and post-hemodiafiltration with endogenous infusion concentrations. Results: Hemoglobin and albumin were stable during hemodiafiltration with endogenous infusion therapy. The mean reduction ratios of β2-microglobulin, p-cresyl sulfate, and indoxyl sulfate were 43.60%, 40.91%, and 43.64%, respectively. Tumor necrosis factor-α also decreased significantly at a mean rate of 28.10%, while the concentrations of interleukin-6 and high-sensitivity C-reactive protein remained unchanged after one session of hemodiafiltration with endogenous infusion. Conclusion: The hemodiafiltration with endogenous infusion system is a new dialysis technique that combines diffusion, convection, and adsorption processes. It allows for extensive solute removal, including protein-bound uremic toxins and some pro-inflammatory cytokines, but does not cause nutrient loss and inflammatory response during the treatment. Although the effect after a single hemodiafiltration with endogenous infusion session is limited, it may be improved by repeated and long-term treatment.
Collapse
Affiliation(s)
- Xiaohong Chen
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - Bo Shen
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - Xuesen Cao
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - Fangfang Xiang
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - Jianzhou Zou
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - Xiaoqiang Ding
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| |
Collapse
|
2
|
Bates SE, Eisch R, Ling A, Rosing D, Turner M, Pittaluga S, Prince HM, Kirschbaum MH, Allen SL, Zain J, Geskin LJ, Joske D, Popplewell L, Cowen EW, Jaffe ES, Nichols J, Kennedy S, Steinberg SM, Liewehr DJ, Showe LC, Steakley C, Wright J, Fojo T, Litman T, Piekarz RL. Romidepsin in peripheral and cutaneous T-cell lymphoma: mechanistic implications from clinical and correlative data. Br J Haematol 2015; 170:96-109. [PMID: 25891346 PMCID: PMC4675455 DOI: 10.1111/bjh.13400] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/04/2015] [Indexed: 01/02/2023]
Abstract
Romidepsin is an epigenetic agent approved for the treatment of patients with cutaneous or peripheral T-cell lymphoma (CTCL and PTCL). Here we report data in all patients treated on the National Cancer Institute 1312 trial, demonstrating long-term disease control and the ability to retreat patients relapsing off-therapy. In all, 84 patients with CTCL and 47 with PTCL were enrolled. Responses occurred early, were clinically meaningful and of very long duration in some cases. Notably, patients with PTCL receiving romidepsin as third-line therapy or later had a comparable response rate (32%) of similar duration as the total population (38%). Eight patients had treatment breaks of 3.5 months to 10 years; in four of six patients, re-initiation of treatment led to clear benefit. Safety data show slightly greater haematological and constitutional toxicity in PTCL. cDNA microarray studies show unique individual gene expression profiles, minimal overlap between patients, and both induction and repression of gene expression that reversed within 24 h. These data argue against cell death occurring as a result of an epigenetics-mediated gene induction programme. Together this work supports the safety and activity of romidepsin in T-cell lymphoma, but suggests a complex mechanism of action.
Collapse
Affiliation(s)
- Susan E. Bates
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD
| | - Robin Eisch
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD
| | - Alex Ling
- Department of Radiology, Warren G Magnuson Clinical Center, NIH, Bethesda, MD
| | | | | | | | - H. Miles Prince
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Mark H. Kirschbaum
- Hematological Malignancies, Penn State Hershey Medical Center, Hershey, PA
| | - Steven L. Allen
- Hofstra North Shore-LIJ School of Medicine and Monter Cancer Center, Lake Success, NY
| | | | - Larisa J. Geskin
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - David Joske
- Sir Charles Gairdner Hospital, Nedlands, Western Australia
| | | | | | | | | | | | | | | | | | | | - John Wright
- Cancer Therapy Evaluation Program, DCTDC, NCI, Bethesda, MD
| | - Tito Fojo
- Center for Cancer Research, NCI, Bethesda, MD
| | | | | |
Collapse
|