1
|
Chromosomal Rearrangements and Altered Nuclear Organization: Recent Mechanistic Models in Cancer. Cancers (Basel) 2021; 13:cancers13225860. [PMID: 34831011 PMCID: PMC8616464 DOI: 10.3390/cancers13225860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary New methodologies and technologies developed in the last few decades have highlighted the precise spatial organization of the genome into the cell nucleus, with chromatin architecture playing a central role in controlling several genome functions. Genes are expressed in a well-defined way and at a well-defined time during cell differentiation, and alterations in genome organization can lead to genetic diseases, such as cancers. Here we review how the genome is organized in the cell nucleus and the evidence of genome misorganization leading to cancer diseases. Abstract The last decade has seen significant progress in understanding how the genome is organized spatially within interphase nuclei. Recent analyses have confirmed earlier molecular cytogenetic studies on chromosome positioning within interphase nuclei and provided new information about the topologically associated domains (TADs). Examining the nuances of how genomes are organized within interphase nuclei will provide information fundamental to understanding gene regulation and expression in health and disease. Indeed, the radial spatial positioning of individual gene loci within nuclei has been associated with up- and down-regulation of specific genes, and disruption of normal genome organization within nuclei will result in compromised cellular health. In cancer cells, where reorganization of the nuclear architecture may occur in the presence of chromosomal rearrangements such as translocations, inversions, or deletions, gene repositioning can change their expression. To date, very few studies have focused on radial gene positioning and the correlation to gene expression in cancers. Further investigations would improve our understanding of the biological mechanisms at the basis of cancer and, in particular, in leukemia initiation and progression, especially in those cases where the molecular consequences of chromosomal rearrangements are still unclear. In this review, we summarize the main milestones in the field of genome organization in the nucleus and the alterations to this organization that can lead to cancer diseases.
Collapse
|
2
|
Karamysheva T, Romanenko S, Makunin A, Rajičić M, Bogdanov A, Trifonov V, Blagojević J, Vujošević M, Orishchenko K, Rubtsov N. New Data on Organization and Spatial Localization of B-Chromosomes in Cell Nuclei of the Yellow-Necked Mouse Apodemus flavicollis. Cells 2021; 10:cells10071819. [PMID: 34359988 PMCID: PMC8305704 DOI: 10.3390/cells10071819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
The gene composition, function and evolution of B-chromosomes (Bs) have been actively discussed in recent years. However, the additional genomic elements are still enigmatic. One of Bs mysteries is their spatial organization in the interphase nucleus. It is known that heterochromatic compartments are not randomly localized in a nucleus. The purpose of this work was to study the organization and three-dimensional spatial arrangement of Bs in the interphase nucleus. Using microdissection of Bs and autosome centromeric heterochromatic regions of the yellow-necked mouse (Apodemus flavicollis) we obtained DNA probes for further two-dimensional (2D)- and three-dimensional (3D)- fluorescence in situ hybridization (FISH) studies. Simultaneous in situ hybridization of obtained here B-specific DNA probes and autosomal C-positive pericentromeric region-specific probes further corroborated the previously stated hypothesis about the pseudoautosomal origin of the additional chromosomes of this species. Analysis of the spatial organization of the Bs demonstrated the peripheral location of B-specific chromatin within the interphase nucleus and feasible contact with the nuclear envelope (similarly to pericentromeric regions of autosomes and sex chromosomes). It is assumed that such interaction is essential for the regulation of nuclear architecture. It also points out that Bs may follow the same mechanism as sex chromosomes to avoid a meiotic checkpoint.
Collapse
Affiliation(s)
- Tatyana Karamysheva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Correspondence: ; Tel.: +7-(383)-363-4963 (ext. 1332)
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.R.); (V.T.)
| | | | - Marija Rajičić
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Alexey Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.R.); (V.T.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Jelena Blagojević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Mladen Vujošević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Konstantin Orishchenko
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikolay Rubtsov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Sequence Composition and Evolution of Mammalian B Chromosomes. Genes (Basel) 2018; 9:genes9100490. [PMID: 30309007 PMCID: PMC6211034 DOI: 10.3390/genes9100490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
B chromosomes (Bs) revealed more than a hundred years ago remain to be some of the most mysterious elements of the eukaryotic genome. Their origin and evolution, DNA composition, transcriptional activity, impact on adaptiveness, behavior in meiosis, and transfer to the next generation require intensive investigations using modern methods. Over the past years, new experimental techniques have been applied and helped us gain a deeper insight into the nature of Bs. Here, we consider mammalian Bs, taking into account data on their DNA sequencing, transcriptional activity, positions in nuclei of somatic and meiotic cells, and impact on genome functioning. Comparative cytogenetics of Bs suggests the existence of different mechanisms of their formation and evolution. Due to the long and complicated evolvement of Bs, the similarity of their morphology could be explained by the similar mechanisms involved in their development while the difference between Bs even of the same origin could appear due to their positioning at different stages of their evolution. A complex analysis of their DNA composition and other features is required to clarify the origin and evolutionary history of Bs in the species studied. The intraspecific diversity of Bs makes this analysis a very important element of B chromosome studies.
Collapse
|
4
|
Vujošević M, Rajičić M, Blagojević J. B Chromosomes in Populations of Mammals Revisited. Genes (Basel) 2018; 9:E487. [PMID: 30304868 PMCID: PMC6210394 DOI: 10.3390/genes9100487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 01/23/2023] Open
Abstract
The study of B chromosomes (Bs) started more than a century ago, while their presence in mammals dates since 1965. As the past two decades have seen huge progress in application of molecular techniques, we decided to throw a glance on new data on Bs in mammals and to review them. We listed 85 mammals with Bs that make 1.94% of karyotypically studied species. Contrary to general view, a typical B chromosome in mammals appears both as sub- or metacentric that is the same size as small chromosomes of standard complement. Both karyotypically stable and unstable species possess Bs. The presence of Bs in certain species influences the cell division, the degree of recombination, the development, a number of quantitative characteristics, the host-parasite interactions and their behaviour. There is at least some data on molecular structure of Bs recorded in nearly a quarter of species. Nevertheless, a more detailed molecular composition of Bs presently known for six mammalian species, confirms the presence of protein coding genes, and the transcriptional activity for some of them. Therefore, the idea that Bs are inert is outdated, but the role of Bs is yet to be determined. The maintenance of Bs is obviously not the same for all species, so the current models must be adapted while bearing in mind that Bs are not inactive as it was once thought.
Collapse
Affiliation(s)
- Mladen Vujošević
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| | - Marija Rajičić
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| | - Jelena Blagojević
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| |
Collapse
|
5
|
Sequencing of Supernumerary Chromosomes of Red Fox and Raccoon Dog Confirms a Non-Random Gene Acquisition by B Chromosomes. Genes (Basel) 2018; 9:genes9080405. [PMID: 30103445 PMCID: PMC6116037 DOI: 10.3390/genes9080405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
B chromosomes (Bs) represent a variable addition to the main karyotype in some lineages of animals and plants. Bs accumulate through non-Mendelian inheritance and become widespread in populations. Despite the presence of multiple genes, most Bs lack specific phenotypic effects, although their influence on host genome epigenetic status and gene expression are recorded. Previously, using sequencing of isolated Bs of ruminants and rodents, we demonstrated that Bs originate as segmental duplications of specific genomic regions, and subsequently experience pseudogenization and repeat accumulation. Here, we used a similar approach to characterize Bs of the red fox (Vulpes vulpes L.) and the Chinese raccoon dog (Nyctereutes procyonoides procyonoides Gray). We confirm the previous findings of the KIT gene on Bs of both species, but demostrate an independent origin of Bs in these species, with two reused regions. Comparison of gene ensembles in Bs of canids, ruminants, and rodents once again indicates enrichment with cell-cycle genes, development-related genes, and genes functioning in the neuron synapse. The presence of B-chromosomal copies of genes involved in cell-cycle regulation and tissue differentiation may indicate importance of these genes for B chromosome establishment.
Collapse
|
6
|
Karamysheva TV, Torgasheva AA, Yefremov YR, Bogomolov AG, Liehr T, Borodin PM, Rubtsov NB. Spatial organization of fibroblast and spermatocyte nuclei with different B-chromosome content in Korean field mouse, Apodemus peninsulae (Rodentia, Muridae). Genome 2017; 60:815-824. [PMID: 28732174 DOI: 10.1139/gen-2017-0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Korean field mouse (Apodemus peninsulae) shows a wide variation in the number of B chromosomes composed of constitutive heterochromatin. For this reason, it provides a good model to study the influence of the number of centromeres and amount of heterochromatin on spatial organization of interphase nuclei. We analyzed the three-dimensional organization of fibroblast and spermatocyte nuclei of the field mice carrying a different number of B chromosomes using laser scanning microscopy and 3D fluorescence in situ hybridization. We detected a co-localization of the B chromosomes with constitutive heterochromatin of the chromosomes of the basic set. We showed a non-random distribution of B chromosomes in the spermatocyte nuclei. Unpaired B chromosomes showed a tendency to occur in the compartment formed by the unpaired part of the XY bivalent.
Collapse
Affiliation(s)
- Tatyana V Karamysheva
- a Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna A Torgasheva
- a Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yaroslav R Yefremov
- a Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.,b Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton G Bogomolov
- a Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.,b Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Thomas Liehr
- c Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Pavel M Borodin
- a Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.,b Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikolay B Rubtsov
- a Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.,b Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Bugno-Poniewierska M, Solek P, Wronski M, Potocki L, Jezewska-Witkowska G, Wnuk M. Genome organization and DNA methylation patterns of B chromosomes in the red fox and Chinese raccoon dogs. Hereditas 2014; 151:169-76. [PMID: 25491428 DOI: 10.1111/hrd2.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/10/2014] [Indexed: 12/23/2022] Open
Abstract
The molecular structure of B chromosomes (Bs) is relatively well studied. Previous research demonstrates that Bs of various species usually contain two types of repetitive DNA sequences, satellite DNA and ribosomal DNA, but Bs also contain genes encoding histone proteins and many others. However, many questions remain regarding the origin and function of these chromosomes. Here, we focused on the comparative cytogenetic characteristics of the red fox and Chinese raccoon dog B chromosomes with particular attention to the distribution of repetitive DNA sequences and their methylation status. We confirmed that the small Bs of the red fox show a typical fluorescent telomeric distal signal, whereas medium-sized Bs of the Chinese raccoon dog were characterized by clusters of telomeric sequences along their length. We also found different DNA methylation patterns for the B chromosomes of both species. Therefore, we concluded that DNA methylation may maintain the transcriptional inactivation of DNA sequences localized to B chromosomes and may prevent genetic unbalancing and several negative phenotypic effects.
Collapse
|