1
|
Wang MY, Yi MX, Mo XY, Wei SJ, Qiao Y, Zhang Z, Su ZL, Lu HY. Over-activation of iNKT cells aggravate lung injury in bronchopulmonary dysplasia mice. Redox Biol 2024; 77:103370. [PMID: 39342744 PMCID: PMC11470607 DOI: 10.1016/j.redox.2024.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe lung disease in preterm infants, the abnormal proliferate and differentiate ability of type II epithelial cells (AEC II) is the key to the pathological basis of BPD. Mechanisms regarding abnormal AEC II in BPD remain unclear. The present work investigated the role and mechanisms of invariant natural killer T (iNKT) cells in lung disorder in BPD using public datasets, clinical samples, a hyperoxia-induced BPD mouse model and AEC II-iNKT cells transwell co-culture system. Firstly, we found that the NKT cells development factor IL-15 increased over time in patients with BPD in public databases, and clinically collected peripheral blood NKT cells in patients with BPD were increased. Subsequently, the percentage of iNKT cells increased in hyperoxia group compared with normoxia group, with the highest at P7, accompanied by increased activation with abnormal lung development. The administration of anti-CD1d neutralizing antibody to inhibit iNKT cells could alleviate the abnormal lung development of hyperoxia group mice, while α-GalCer administration could aggravate lung injury in hyperoxia group mice, and adoptive transfer of iNKT cells could aggravate the abnormal lung development in hyperoxia group mice. In addition, to further verify the role of iNKT cells on AEC II, AEC II-iNKT cells co-culture system was established. The presence of iNKT cells could aggravate the abnormal expression of SP-C and T1α under hyperoxia. Meanwhile, RNA-seq analysis showed that ferroptosis-related genes were highly expressed in AEC II co-cultured with iNKT cells under hyperoxia. We further validated the effect of the presence of iNKT cells under hyperoxia environment on AEC II ferroptosis levels, suggested that iNKT cells promote AEC II ferroptosis under hyperoxia, accompanied by decreased expression of SP-C and T1α. Our study found that the recruitment of iNKT cells in the lung may be an important cause of alveolarization disorder in BPD.
Collapse
Affiliation(s)
- Ming-Yan Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Meng-Xu Yi
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Xing-Yu Mo
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Shan-Jie Wei
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yu Qiao
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Zheng Zhang
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Institute for Medical Immunology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| |
Collapse
|
2
|
Regulatory Peptides in Asthma. Int J Mol Sci 2021; 22:ijms222413656. [PMID: 34948451 PMCID: PMC8707337 DOI: 10.3390/ijms222413656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Collapse
|
3
|
Lin Q, Johns RA. Resistin family proteins in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2020; 319:L422-L434. [PMID: 32692581 DOI: 10.1152/ajplung.00040.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The family of resistin-like molecules (RELMs) consists of four members in rodents (RELMα/FIZZ1/HIMF, RELMβ/FIZZ2, Resistin/FIZZ3, and RELMγ/FIZZ4) and two members in humans (Resistin and RELMβ), all of which exhibit inflammation-regulating, chemokine, and growth factor properties. The importance of these cytokines in many aspects of physiology and pathophysiology, especially in cardiothoracic diseases, is rapidly evolving in the literature. In this review article, we attempt to summarize the contribution of RELM signaling to the initiation and progression of lung diseases, such as pulmonary hypertension, asthma/allergic airway inflammation, chronic obstructive pulmonary disease, fibrosis, cancers, infection, and other acute lung injuries. The potential of RELMs to be used as biomarkers or risk predictors of these diseases also will be discussed. Better understanding of RELM signaling in the pathogenesis of pulmonary diseases may offer novel targets or approaches for the development of therapeutics to treat or prevent a variety of inflammation, tissue remodeling, and fibrosis-related disorders in respiratory, cardiovascular, and other systems.
Collapse
Affiliation(s)
- Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Hirose K, Iwata A, Tamachi T, Nakajima H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev 2018; 278:145-161. [PMID: 28658544 DOI: 10.1111/imr.12540] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allergic asthma is characterized by eosinophilic airway inflammation, mucus hyperproduction, and airway hyperreactivity, causing reversible airway obstruction. Accumulating evidence indicates that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate these pathognomonic features of asthma. However, over the past decade, the understanding of asthma pathogenesis has made a significant shift from a Th2 cell-dependent, IgE-mediated disease to a more complicated heterogeneous disease. Recent studies clearly show that not only Th2 cytokines but also other T cell-related cytokines such as IL-17A and IL-22 as well as epithelial cell cytokines such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are involved in the pathogenesis of asthma. In this review, we focus on the roles of these players beyond Th2 pathways in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiro Tamachi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol 2016; 13:418-31. [PMID: 27018218 DOI: 10.1038/cmi.2015.105] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/21/2015] [Accepted: 11/21/2015] [Indexed: 01/12/2023] Open
Abstract
The mucosal immune system serves as our front-line defense against pathogens. It also tightly maintains immune tolerance to self-symbiotic bacteria, which are usually called commensals. Sensing both types of microorganisms is modulated by signalling primarily through various pattern-recognition receptors (PRRs) on barrier epithelial cells or immune cells. After sensing, proinflammatory molecules such as cytokines are released by these cells to mediate either defensive or tolerant responses. The interleukin-17 (IL-17) family members belong to a newly characterized cytokine subset that is critical for the maintenance of mucosal homeostasis. In this review, we will summarize recent progress on the diverse functions and signals of this family of cytokines at different mucosal edges.
Collapse
|
6
|
Kronenberg M, Lantz O. Mucosal-Resident T Lymphocytes with Invariant Antigen Receptors. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Grunig G, Marsh LM, Esmaeil N, Jackson K, Gordon T, Reibman J, Kwapiszewska G, Park SH. Perspective: ambient air pollution: inflammatory response and effects on the lung's vasculature. Pulm Circ 2014; 4:25-35. [PMID: 25006418 DOI: 10.1086/674902] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 12/19/2022] Open
Abstract
Particulates from air pollution are implicated in causing or exacerbating respiratory and systemic cardiovascular diseases and are thought to be among the leading causes of morbidity and mortality. However, the contribution of ambient particulate matter to diseases affecting the pulmonary circulation, the right heart, and especially pulmonary hypertension is much less documented. Our own work and that of other groups has demonstrated that prolonged exposure to antigens via the airways can cause severe pulmonary arterial remodeling. In addition, vascular changes have been well documented in a typical disease of the airways, asthma. These experimental and clinical findings link responses in the airways with responses in the lung's vasculature. It follows that particulate air pollution could cause, or exacerbate, diseases in the pulmonary circulation and associated pulmonary hypertension. This perspective details the literature for support of this concept. Data regarding the health effects of particulate matter from air pollution on the lung's vasculature, with emphasis on the lung's inflammatory responses to particulate matter deposition and pulmonary hypertension, are discussed. A deeper understanding of the health implications of exposure to ambient particulate matter will improve our knowledge of how to improve the management of lung diseases, including diseases of the pulmonary circulation. As man-made ambient particulate air pollution is typically linked to economic growth, a better understanding of the health effects of exposure to particulate air pollution is expected to integrate the global goal of achieving healthy living for all.
Collapse
Affiliation(s)
- Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA ; Division of Pulmonary Medicine, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Nafiseh Esmaeil
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA ; Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Katelin Jackson
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Joan Reibman
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA ; Division of Pulmonary Medicine, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | - Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| |
Collapse
|
8
|
Neunkirchner A, Schmetterer KG, Pickl WF. Lymphocyte-based model systems for allergy research: a historic overview. Int Arch Allergy Immunol 2014; 163:259-91. [PMID: 24777172 DOI: 10.1159/000360163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the last decades, a multitude of studies applying distinct in vitro and in vivo model systems have contributed greatly to our better understanding of the initiation and regulation of inflammatory processes leading to allergic diseases. Over the years, it has become evident that among lymphocytes, not only IgE-producing B cells and allergy-orchestrating CD4(+) helper cells but also cytotoxic CD8(+) T cells, γδ-T cells and innate lymphoid cells, as well as regulatory lymphocytes, might critically shape the immune response towards usually innocuous allergens. In this review, we provide a historic overview of pioneering work leading to the establishment of important lymphocyte-based model systems for allergy research. Moreover, we contrast the original findings with our currently more refined knowledge to appreciate the actual validity of the respective models and to reassess the conclusions obtained from them. Conflicting studies and interpretations are identified and discussed. The tables are intended to provide an easy overview of the field not only for scientists newly entering the field but also for the broader readership interested in updating their knowledge. Along those lines, herein we discuss in vitro and in vivo approaches to the investigation of lymphocyte effector cell activation, polarization and regulation, and describe depletion and adoptive transfer models along with gene knockout and transgenic (tg) methodologies. In addition, novel attempts to establish humanized T cell antigen receptor tg mouse models for allergy research are described and discussed.
Collapse
Affiliation(s)
- Alina Neunkirchner
- Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|