1
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wang C, Kaufmann A, Kampschulte N, Elbelt U, Kassner U, Steinhagen-Thiessen E, Pietzner A, Schmöcker C, Datta D, Sanpietro T, Schebb NH, Weylandt KH, Rohwer N. Changing from lipoprotein apheresis to evolocumab treatment lowers circulating levels of arachidonic acid and oxylipins. ATHEROSCLEROSIS PLUS 2024; 55:55-62. [PMID: 38390468 PMCID: PMC10881432 DOI: 10.1016/j.athplu.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Background and aims Previous studies have shown that lipoprotein apheresis can modify the plasma lipidome and pro-inflammatory and pro-thrombotic lipid mediators. This has not been examined for treatment with protein convertase subtilisin/kexin type 9 inhibitors such as evolocumab, which are increasingly used instead of lipoprotein apheresis in treatment-resistant familial hypercholesterolemia. The aim of this study was to compare the effects of evolocumab treatment and lipoprotein apheresis on the fatty acid profile and on formation of lipid mediators in blood samples. Methods We analyzed blood samples from 37 patients receiving either lipoprotein apheresis or evolocumab treatment as part of a previous study. Patients were stratified according to receiving lipoprotein apheresis (n = 19) and evolocumab treatment (n = 18). Serum fatty acid analysis was performed using gas chromatography flame ionization detection and plasma oxylipin analysis was done using liquid chromatography tandem mass spectrometry. Results Changing from lipoprotein apheresis to evolocumab treatment led to lower levels of omega-6 polyunsaturated fatty acid (n-6 PUFA) including arachidonic acid, dihomo-γ-linolenic acid and linoleic acid. Moreover, several n-6 PUFA-derived oxylipins were reduced after evolocumab treatment. Conclusions Given that arachidonic acid, either directly or as a precursor, is associated with the development of inflammation and atherosclerosis, evolocumab-mediated reductions of arachidonic acid and its metabolites might have an additional beneficial effect to lower cardiovascular risk.
Collapse
Affiliation(s)
- Chaoxuan Wang
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Anne Kaufmann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Ulf Elbelt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
- MVZ Endokrinologikum Berlin, Berlin, Germany
| | - Ursula Kassner
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Campus Virchow Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Campus Virchow Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Pietzner
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Christoph Schmöcker
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Dev Datta
- Department of Metabolic Medicine, University Hospital Llandough, Cardiff, United Kingdom
| | - Tiziana Sanpietro
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Karsten-H Weylandt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Nadine Rohwer
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
3
|
Bácsi A, Lucas R, Sütő MI, Szklenár M, Bohn T, Rühl R. An immune-shift induced by lycopene; from an eosinophil-dominant type towards an eosinophil/neutrophil-co-dominant type of airway inflammation. Food Funct 2022; 13:6534-6544. [PMID: 35642947 DOI: 10.1039/d2fo00875k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lycopene as the main carotenoid from tomatoes is known to have beneficial effects on various inflammatory diseases. In mice, lycopene ameliorates asthma symptoms and in human asthmatic patients serum lycopene levels are reduced. To further investigate the immunomodulatory effect of lycopene, first, we used a ragweed pollen extract (RWE)-induced asthma model in mice. In a second approach, we established a RWE-induced asthma model in gerbils, because of a more human-like carotenoid absorption in these animals. In RWE-sensitized/RWE-challenged gerbils (C+) following a basal diet, mainly the number of eosinophils in the broncho-alveolar lavage (BAL) significantly increased, comparable to RWE-sensitized/PBS-challenged gerbils (C-). In RWE-sensitized/PBS-challenged gerbils with lycopene-supplementation (L-), an elevated number of mainly neutrophils, in addition to eosinophils, was detected compared to C-, whereas in RWE-sensitized/RWE-challenged animals with lycopene-supplementation (L+), mainly increased neutrophil numbers in BAL were detected compared to C+. Furthermore, using LC-MS, we determined an array of eicosanoids/docosanoids in the lungs and observed that 5-, 8-lipoxygenase (LOX) and cyclooxygenase (COX) pathways were significantly increased after intranasal RWE-challenge in sensitized mice and just by tendency in gerbils. In PBS- and RWE-challenged animals, lycopene-supplementation significantly raised COX-pathway metabolites. In conclusion, we found that lycopene-supplementation resulted in an increased inflammatory influx of neutrophils in combination with increased COX-pathways metabolites. This pro-inflammatory, pro-neutrophil activity induced by lycopene might be an important shift from allergic asthma towards an inflammatory symptomatic asthma type, though with the potential for resolution.
Collapse
Affiliation(s)
- Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renáta Lucas
- Laboratory of Nutritional Bioactivation and Bioanalysis, Medical and Health Science Center, University of Debrecen, Hungary
| | - Máté István Sütő
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Mónika Szklenár
- Paprika Bioanalytics BT, Mezögazdász utca 62, H-4002 Debrecen, Hungary.
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Ralph Rühl
- Laboratory of Nutritional Bioactivation and Bioanalysis, Medical and Health Science Center, University of Debrecen, Hungary.,Paprika Bioanalytics BT, Mezögazdász utca 62, H-4002 Debrecen, Hungary.
| |
Collapse
|
4
|
Dou T, Yan S, Liu L, Wang K, Jian Z, Xu Z, Zhao J, Wang Q, Sun S, Talpur MZ, Duan X, Gu D, He Y, Du Y, Abdulwahid AM, Li Q, Rong H, Cao W, Su Z, Zhao G, Liu R, Zhao S, Huang Y, Te Pas MFW, Ge C, Jia J. Integrative analysis of transcriptomics and metabolomics to reveal the melanogenesis pathway of muscle and related meat characters in Wuliangshan black-boned chickens. BMC Genomics 2022; 23:173. [PMID: 35236293 PMCID: PMC8892760 DOI: 10.1186/s12864-022-08388-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Background Melanin is an important antioxidant in food and has been used in medicine and cosmetology. Chicken meat with high melanin content from black-boned chickens have been considered a high nutritious food with potential medicinal properties. The molecular mechanism of melanogenesis of skeletal muscle in black-boned chickens remain poorly understood. This study investigated the biological gene-metabolite associations regulating the muscle melanogenesis pathways in Wuliangshan black-boned chickens with two normal boned chicken breeds as control. Results We identified 25 differentially expressed genes and 11 transcription factors in the melanogenesis pathways. High levels of the meat flavor compounds inosine monophosphate, hypoxanthine, lysophospholipid, hydroxyoctadecadienoic acid, and nicotinamide mononucleotide were found in Wuliangshan black-boned chickens. Conclusion Integrative analysis of transcriptomics and metabolomics revealed the dual physiological functions of the PDZK1 gene, involved in pigmentation and/or melanogenesis and regulating the phospholipid signaling processes in muscle of black boned chickens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08388-w.
Collapse
Affiliation(s)
- Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.,Yunnan Vocational and Technical College of Agriculture, Kunming, 650031, Yunnan Province, People's Republic of China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Zonghui Jian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.,College of Food Science, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Qiuting Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Shuai Sun
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Mir Zulqarnain Talpur
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Xiaohua Duan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.,Yunnan University of Traditional Chinese Medical, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Dahai Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.,College of Food Science, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Yang He
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Yanli Du
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Alsoufi Mohammed Abdulwahid
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Qihua Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Hua Rong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Weina Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, College of Computing and Informatics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Ying Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Marinus F W Te Pas
- Wageningen Livestock Research, Wageningen UR, Wageningen, 238050, The Netherlands. .,Visiting Professor Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.
| |
Collapse
|
5
|
Töröcsik D, Weise C, Gericke J, Szegedi A, Lucas R, Mihaly J, Worm M, Rühl R. Transcriptomic and lipidomic profiling of eicosanoid/docosanoid signalling in affected and non-affected skin of human atopic dermatitis patients. Exp Dermatol 2020; 28:177-189. [PMID: 30575130 DOI: 10.1111/exd.13867] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023]
Abstract
Lipoxygenases (LOX) and cyclooxygenase (COX) are the main enzymes for PUFA metabolism to highly bio-active prostaglandins, leukotrienes, thromboxanes, lipoxins, resolvins and protectins. LOX and COX pathways are important for the regulation of pro-inflammatory or pro-resolving metabolite synthesis and metabolism for various inflammatory diseases such as atopic dermatitis (AD). In this study, we determined PUFAs and PUFA metabolites in serum as well as affected and non-affected skin samples from AD patients and the dermal expression of various enzymes, binding proteins and receptors involved in these LOX and COX pathways. Decreased EPA and DHA levels in serum and reduced EPA level in affected and non-affected skin were found; in addition, n3/n6-PUFA ratios were lower in affected and non-affected skin and serum. Mono-hydroxylated PUFA metabolites of AA, EPA, DHA and the sum of AA, EPA and DHA metabolites were increased in affected and non-affected skin. COX1 and ALOX12B expression, COX and 12/15-LOX metabolites as well as various lipids, which are known to induce itch (12-HETE, LTB4, TXB2, PGE2 and PGF2) and the ratio of pro-inflammatory vs pro-resolving lipid mediators in non-affected and affected skin as well as in the serum of AD patients were increased, while n3/n6-PUFAs and metabolite ratios were lower in non-affected and affected AD skin. Expression of COX1 and COX-metabolites was even higher in non-affected AD skin. To conclude, 12/15-LOX and COX pathways were mainly upregulated, while n3/n6-PUFA and metabolite ratios were lower in AD patients skin. All these parameters are a hallmark of a pro-inflammatory and non-resolving environment in affected and partly in non-affected skin of AD patients.
Collapse
Affiliation(s)
- Daniel Töröcsik
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Christin Weise
- Department of Dermatology and Allergology, Allergy-Center-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Janine Gericke
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Renata Lucas
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Johanna Mihaly
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Margitta Worm
- Department of Dermatology and Allergology, Allergy-Center-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
6
|
Rühl R, Krezel W, de Lera AR. 9-Cis-13,14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: vitamin A5. Nutr Rev 2019; 76:929-941. [PMID: 30358857 DOI: 10.1093/nutrit/nuy057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The identity of the endogenous RXR ligand has not been conclusively determined, even though several compounds of natural origin, including retinoids and fatty acids, have been postulated to fulfill this role. Filling this gap, 9-cis-13,14-dihydroretinoic acid (9CDHRA) was identified as an endogenous RXR ligand in mice. This review examines the physiological relevance of various potential endogenous RXR ligands, especially 9CDHRA. The elusive steps in the metabolic synthesis of 9CDHRA, as well as the nutritional/nutrimetabolic origin of 9CDHRA, are also explored, along with the suitability of the ligand to be the representative member of a novel vitamin A class (vitamin A5).
Collapse
Affiliation(s)
- Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm, Centre National Recherche Scientifique (CNRS), Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultad de Química, Centro De Investigaciones Biomédicasand Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, Spain
| |
Collapse
|
7
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
8
|
Manega CM, Fiorelli S, Porro B, Turnu L, Cavalca V, Bonomi A, Cosentino N, Di Minno A, Marenzi G, Tremoli E, Eligini S. 12(S)-Hydroxyeicosatetraenoic acid downregulates monocyte-derived macrophage efferocytosis: New insights in atherosclerosis. Pharmacol Res 2019; 144:336-342. [PMID: 31028904 DOI: 10.1016/j.phrs.2019.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/24/2022]
Abstract
The involvement of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), a 12-lipooxygenase product of arachidonic acid, has been suggested in atherosclerosis. However, its effect on macrophage functions is not completely understood, so far. The uptake of apoptotic cells (efferocytosis) by macrophages is an anti-inflammatory process, impaired in advanced atherosclerotic lesions. This process induces the release of the anti-inflammatory cytokine interleukin-10 (IL-10), and it is regulated by Rho-GTPases, whose activation involves the isoprenylation, a modification inhibited by statins. We assessed 12-HETE levels in serum of coronary artery disease (CAD) patients, and explored 12(S)-HETE in vitro effect on monocyte-derived macrophage (MDM) efferocytosis. Sixty-four CAD patients and 24 healthy subjects (HS) were enrolled. Serum 12-HETE levels were measured using a tandem mass spectrometry method. MDMs, obtained from a spontaneous differentiation of adherent monocytes, were treated with 12(S)-HETE (10-50 ng/mL). Efferocytosis and RhoA activation were evaluated by flow cytometry. IL-10 was measured by ELISA. CAD patients showed increased 12-HETE serum levels compared to HS (665.2 [438.1-896.2] ng/mL and 525.1 [380.1-750.1] ng/mL, respectively, p < 0.05) and reduced levels of IL-10. MDMs expressed the 12(S)-HETE cognate receptor GPR31. CAD-derived MDMs displayed defective efferocytosis vs HS-MDMs (9.4 [7.7-11.3]% and 11.1 [9.6-14.1]% of MDMs that have engulfed apoptotic cells, respectively, p < 0.01). This reduction is marked in MDMs obtained from patients not treated with statin (9.3 [7.4-10.6]% statin-free CAD vs HS, p = 0.01; and 9.9 [8.6-11.6]% statin-treated CAD vs HS, p = 0.07). The in vitro treatment of MDMs with 12(S)-HETE (20 ng/mL) induced 20% decrease of efferocytosis (p < 0.01) and 71% increase of RhoA activated form (p < 0.05). Atorvastatin (0.1 μM) counteracted these 12(S)-HETE-mediated effects.These results show a 12(S)-HETE pro-inflammatory effect and suggest a new potential contribution of this mediator in the development of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | - Linda Turnu
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | | | - Alice Bonomi
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | | | | | | | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Sonia Eligini
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| |
Collapse
|
9
|
Pipper C, Bordag N, Reiter B, Economides K, Florian P, Birngruber T, Sinner F, Bodenlenz M, Eberl A. LC/MS/MS analyses of open-flow microperfusion samples quantify eicosanoids in a rat model of skin inflammation. J Lipid Res 2019; 60:758-766. [PMID: 30696699 PMCID: PMC6446707 DOI: 10.1194/jlr.m087221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
Eicosanoids are lipid-mediator molecules with key roles in inflammatory skin diseases, such as psoriasis. Eicosanoids are released close to the source of inflammation, where they elicit local pleiotropic effects and dysregulations. Monitoring inflammatory mediators directly in skin lesions could provide new insights and therapeutic possibilities. Here, we analyzed dermal interstitial fluid samples obtained by dermal open-flow microperfusion in a rat model of skin inflammation. We developed a solid-phase extraction ultra-HPLC/MS/MS method to reliably and precisely analyze small-volume samples and quantified 11 eicosanoids [thromboxane B2, prostaglandin (PG) E2, PGD2, PGF2α, leukotriene B4, 15-HETE, 12-HETE, 5-HETE, 12-hydroxyeicosapentaenoic acid, 13-HODE, and 17-hydroxydocosahexaenoic acid]. Our method achieved a median intraday precision of approximately 5% and interday precision of approximately 8%. All calibration curves showed excellent linearity between 0.01 and 50 ng/ml (R2 > 0.980). In the rat model, eicosanoids were significantly increased in imiquimod-treated inflamed skin sites compared with untreated control sites. Oral treatment with an anti-inflammatory glucocorticoid decreased eicosanoid concentrations. These results show that a combination of tissue-specific sampling with LC/MS analytics is well suited for analyzing small sample volumes from minimally invasive sampling methods such as open-flow microperfusion or microdialysis to study local inflammation and the effect of treatments in skin diseases.
Collapse
Affiliation(s)
- Cornelia Pipper
- Joanneum Research Forschungsgesellschaft mbH, Institute for Biomedicine and Health Sciences, Graz, Austria; Center for Biomarker Research in Medicine Graz, Austria
| | | | - Bernadette Reiter
- Joanneum Research Forschungsgesellschaft mbH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Kyriakos Economides
- Type 2 Inflammation and Fibrosis Immunology and Inflammation Research TA, Sanofi, Framingham, MA
| | - Peter Florian
- Type 1/17 Immunology and Arthritis Cluster, Immunology and Inflammation Research TA, Sanofi, Frankfurt am Main, Germany
| | - Thomas Birngruber
- Joanneum Research Forschungsgesellschaft mbH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Frank Sinner
- Joanneum Research Forschungsgesellschaft mbH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Manfred Bodenlenz
- Joanneum Research Forschungsgesellschaft mbH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Anita Eberl
- Joanneum Research Forschungsgesellschaft mbH, Institute for Biomedicine and Health Sciences, Graz, Austria.
| |
Collapse
|
10
|
Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity. Mediators Inflamm 2016; 2016:9867138. [PMID: 27818578 PMCID: PMC5080509 DOI: 10.1155/2016/9867138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/30/2016] [Indexed: 01/19/2023] Open
Abstract
Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA) oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1) metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE), can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE), is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC) to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.
Collapse
|
11
|
Landrier JF, Kasiri E, Karkeni E, Mihály J, Béke G, Weiss K, Lucas R, Aydemir G, Salles J, Walrand S, de Lera AR, Rühl R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. FASEB J 2016; 31:203-211. [PMID: 27729412 PMCID: PMC5161515 DOI: 10.1096/fj.201600263rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022]
Abstract
Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high–vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal–vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high–vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand–induced, WAT-selective, increased retinoic acid response element–mediated signaling; and 3) RAR ligand–dependent reduction of adiponectin expression.—Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue.
Collapse
Affiliation(s)
- Jean-Francois Landrier
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 1260, Marseille, France.,INSERM, Unités Mixtes de Recherche 1062, Nutrition, Obésité et Risque Thrombotique, Marseille, France.,Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Elnaz Kasiri
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,MTA-DE Public Health Research Group, Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Esma Karkeni
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 1260, Marseille, France.,INSERM, Unités Mixtes de Recherche 1062, Nutrition, Obésité et Risque Thrombotique, Marseille, France.,Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Johanna Mihály
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gabriella Béke
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Kathrin Weiss
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Renata Lucas
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gamze Aydemir
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Jérome Salles
- Unités Mixtes de Recherche, Institut National de la Recherche Agronomique (INRA) 1019 Unité de Nutrition Humaine, Centre de Recherches INRA de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - Stéphane Walrand
- Unités Mixtes de Recherche, Institut National de la Recherche Agronomique (INRA) 1019 Unité de Nutrition Humaine, Centre de Recherches INRA de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - Angel R de Lera
- Departamento de Química Orgánica, Universidade de Vigo, Facultad de Química, Centro de Investigaciones Biomédicas and Instituto de Investigación Biomédica de Vigo, Vigo, Spain; and
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary; .,MTA-DE Public Health Research Group, Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
12
|
de Lera ÁR, Krezel W, Rühl R. An Endogenous Mammalian Retinoid X Receptor Ligand, At Last! ChemMedChem 2016; 11:1027-37. [PMID: 27151148 DOI: 10.1002/cmdc.201600105] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/15/2016] [Indexed: 12/27/2022]
Abstract
9-cis-Retinoic acid was identified and claimed to be the endogenous ligand of the retinoid X receptors (RXRs) in 1992. Since then, the endogenous presence of this compound has never been rigorously confirmed. Instead, concerns have been raised by other groups that have reported that 9-cis-retinoic acid is undetectable or that its presence occurs at very low levels. Furthermore, these low levels could not satisfactorily explain the physiological activation of RXR. Alternative ligands, among them various lipids, have also been identified, but also did not fulfill criteria for rigorous endogenous relevance, and their consideration as bona fide endogenous mammalian RXR ligand has likewise been questioned. Recently, novel studies claim that the saturated analogue 9-cis-13,14-dihydroretinoic acid functions as an endogenous physiologically relevant mammalian RXR ligand.
Collapse
Affiliation(s)
- Ángel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale, U964, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404, Illkirch, France
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary.,MTA-DE, Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Hungary
| |
Collapse
|
13
|
Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis. PLoS One 2016; 11:e0153556. [PMID: 27078158 PMCID: PMC4831765 DOI: 10.1371/journal.pone.0153556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/31/2016] [Indexed: 11/26/2022] Open
Abstract
UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA), the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB) irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations.
Collapse
|
14
|
Dozsa A, Mihaly J, Dezso B, Csizmadia E, Keresztessy T, Marko L, Rühl R, Remenyik E, Nagy L. Decreased peroxisome proliferator-activated receptor γ level and signalling in sebaceous glands of patients with acne vulgaris. Clin Exp Dermatol 2016; 41:547-51. [PMID: 26800853 DOI: 10.1111/ced.12794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 11/28/2022]
Abstract
Little is known about the altered lipid metabolism-related transcriptional events occuring in sebaceous glands of patients with acne vulgaris. Peroxisome proliferator-activated receptor (PPAR)γ, a lipid-activated transcription factor, is implicated in differentiation and lipid metabolism of sebocytes. We have observed that PPARγ and its target genes, ADRP (adipose differentiation related protein) and PGAR (PPARγ angioprotein related protein) are expressed at lower levels in sebocytes from patients with acne than in those from healthy controls (HCs) Furthermore, endogenous PPARγ activator lipids such as arachidonic acid-derived keto-metabolites (e.g. 5KETE, 12KETE) are increased in acne-involved and nonacne-involved skin of patients with acne, compared with skin from healthy individuals. Our findings highlight the possible anti-inflammatory role of endogenous ligand-activated PPARγ signaling in human sebocyte biology, and suggest that modulating PPARγ- expression and thereby signaling might be a promising strategy for the clinical management of acne vulgaris.
Collapse
Affiliation(s)
- A Dozsa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dermatology, Semmelweis Ignác Hospital and University Teaching Hospital in Miskolc, Miskolc, Hungary.,Department of Dermatology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - J Mihaly
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - B Dezso
- Department of Pathology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - E Csizmadia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - T Keresztessy
- Department of Dermatology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - L Marko
- Department of Dermatology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - R Rühl
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - E Remenyik
- Department of Dermatology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - L Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary.,DE-MTA 'Lendület' Immunogenomics Research Group, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
Rühl R, Krzyżosiak A, Niewiadomska-Cimicka A, Rochel N, Szeles L, Vaz B, Wietrzych-Schindler M, Álvarez S, Szklenar M, Nagy L, de Lera AR, Krężel W. 9-cis-13,14-Dihydroretinoic Acid Is an Endogenous Retinoid Acting as RXR Ligand in Mice. PLoS Genet 2015; 11:e1005213. [PMID: 26030625 PMCID: PMC4451509 DOI: 10.1371/journal.pgen.1005213] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/13/2015] [Indexed: 01/08/2023] Open
Abstract
The retinoid X receptors (RXRs) are ligand-activated transcription factors which heterodimerize with a number of nuclear hormone receptors, thereby controlling a variety of (patho)-physiological processes. Although synthetic RXR ligands are developed for the treatment of various diseases, endogenous ligand(s) for these receptors have not been conclusively identified. We show here that mice lacking cellular retinol binding protein (Rbp1-/-) display memory deficits reflecting compromised RXR signaling. Using HPLC-MS and chemical synthesis we identified in Rbp1-/- mice reduced levels of 9-cis-13,14-dihydroretinoic acid (9CDHRA), which acts as an RXR ligand since it binds and transactivates RXR in various assays. 9CDHRA rescues the Rbp1-/- phenotype similarly to a synthetic RXR ligand and displays similar transcriptional activity in cultured human dendritic cells. High endogenous levels of 9CDHRA in mice indicate physiological relevance of these data and that 9CDHRA acts as an endogenous RXR ligand. Daily nutrition, in addition to being a source of energy, contains micronutrients, a class of nutrients including vitamins which are essential for life and which act by orchestrating a vast number of developmental and physiological processes. During metabolism, micronutrients are frequently transformed into their bioactive forms. Nuclear hormone receptors are a family of proteins functioning as ligand-regulated transcription factors which can sense such bioactive molecules and translate those signals into transcriptional, adaptive responses. Retinoid X receptors occupy a central place in this signaling as they directly interact, and thereby control, activities of several nuclear hormone receptors. We report here the identification of a novel bioactive form of vitamin A, which is the first endogenous form of this vitamin capable to bind and activate retinoid X receptors. Accordingly, we show that this single molecule displays biological activity similar to synthetic agonists of retinoid X receptors and coordinates transcriptional activities of several nuclear receptor signaling pathways. Those findings may have immediate biomedical implications, as retinoid X receptors are implicated in the control of a number of physiological functions and their pathology.
Collapse
Affiliation(s)
- Ralph Rühl
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Debrecen, Hungary
- Paprika Bioanalytics BT, Debrecen, Hungary
- * E-mail: (RR); (ARdL); (WK)
| | - Agnieszka Krzyżosiak
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Inserm, U 964
- CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
| | - Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Inserm, U 964
- CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Inserm, U 964
- CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
| | - Lajos Szeles
- DE-MTA “Lendület” Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Belén Vaz
- Departamento de Química Orgánica and CINBIO, Facultad de Química, Universidade de Vigo, Vigo, Spain
- Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain
| | - Marta Wietrzych-Schindler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Inserm, U 964
- CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
| | - Susana Álvarez
- Departamento de Química Orgánica and CINBIO, Facultad de Química, Universidade de Vigo, Vigo, Spain
- Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain
| | | | - Laszlo Nagy
- DE-MTA “Lendület” Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Angel R. de Lera
- Departamento de Química Orgánica and CINBIO, Facultad de Química, Universidade de Vigo, Vigo, Spain
- Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain
- * E-mail: (RR); (ARdL); (WK)
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Inserm, U 964
- CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
- * E-mail: (RR); (ARdL); (WK)
| |
Collapse
|
16
|
Harauma A, Tomita M, Muto D, Moriguchi T. Effect of long-term administration of arachidonic acid on n-3 fatty acid deficient mice. Prostaglandins Leukot Essent Fatty Acids 2015; 95:41-5. [PMID: 25650363 DOI: 10.1016/j.plefa.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 12/26/2022]
Abstract
The effect of long-term oral administration of arachidonic acid (ARA, 240 mg/kg/day) on brain function was assessed for mice maintained on an n-3 fatty acid adequate or deficient diet. The administration of ARA for 13 weeks resulted in an elevation of spontaneous motor activity, or the tendency thereof, in both the n-3 fatty acid adequate and deficient groups. However, the n-3 fatty acid deficient mice that were administered with ARA revealed marked deterioration in motor function in a motor coordination test. In the experiment to investigate changes over time, the motor activity of the ARA-administered group continued to increase mildly in n-3 deficient mice, although that of the control group showed a decrease involving habituation for both diet groups from the second week. The fatty acid composition of the brain at the end of the behavioral experiments indicated an increase in the levels of ARA and other n-6 fatty acids, as well as a decrease in the levels of docosahexaenoic acid. These results suggest that long-term administration of ARA causes an increase of futile spontaneous motor activity and the diminution of motor function by aggravation of n-3 fatty acid deficiency.
Collapse
Affiliation(s)
- Akiko Harauma
- Laboratory for Functional Analysis of Marine Materials, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Makiko Tomita
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Daiki Muto
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Toru Moriguchi
- Laboratory for Functional Analysis of Marine Materials, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan; Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
17
|
Kiss B, Szántó M, Szklenár M, Brunyánszki A, Marosvölgyi T, Sárosi E, Remenyik É, Gergely P, Virág L, Decsi T, Rühl R, Bai P. Poly(ADP) ribose polymerase-1 ablation alters eicosanoid and docosanoid signaling and metabolism in a murine model of contact hypersensitivity. Mol Med Rep 2014; 11:2861-7. [PMID: 25482287 DOI: 10.3892/mmr.2014.3044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 09/24/2014] [Indexed: 11/05/2022] Open
Abstract
Poly(ADP‑ribose) polymerase (PARP)‑1 is a pro‑inflammatory protein. The inhibition of PARP‑1 reduces the activity of numerous pro‑inflammatory transcription factors, which results in the reduced production of pro‑inflammatory cytokines, chemokines, matrix metalloproteinases and inducible nitric oxide synthase, culminating in reduced inflammation of the skin and other organs. The aim of the present study was to investigate the effects of the deletion of PARP‑1 expression on polyunsaturated fatty acids (PUFA), and PUFA metabolite composition, in mice under control conditions or undergoing an oxazolone (OXA)‑induced contact hypersensitivity reaction (CHS). CHS was elicited using OXA in both the PARP‑1+/+ and PARP‑1/ mice, and the concentration of PUFAs and PUFA metabolites in the diseased skin were assessed using lipidomics experiments. The levels of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were shown to be increased in the PARP‑1/ mice, as compared with the control, unsensitized PARP‑1+/+ mice. In addition, higher expression levels of fatty acid binding protein 7 (FABP7) were detected in the PARP‑1/ mice. FABP7 is considered to be a specific carrier of DHA and EPA. Furthermore, the levels of the metabolites of DHA and EPA (considered mainly as anti‑inflammatory or pro‑resolving factors) were higher, as compared with the metabolites of arachidonic acid (considered mainly pro‑inflammatory), both in the unsensitized control and OXA‑sensitized PARP‑1/ mice. The results of the present study suggest that the genetic deletion of PARP‑1 may affect the PUFA‑homeostasis of the skin, resulting in an anti‑inflammatory milieu, including increased DHA and EPA levels, and DHA and EPA metabolite levels. This may be an important component of the anti‑inflammatory action of PARP‑1 inhibition.
Collapse
Affiliation(s)
- Borbála Kiss
- Department of Dermatology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Magdolna Szántó
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | | | - Attila Brunyánszki
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | | | - Eszter Sárosi
- Department of Pediatrics, University of Pécs, H-7623 Pécs, Hungary
| | - Éva Remenyik
- Department of Dermatology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Pál Gergely
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Decsi
- Department of Pediatrics, University of Pécs, H-7623 Pécs, Hungary
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, H‑4032 Debrecen, Hungary
| | - Peter Bai
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
18
|
Király A, Váradi T, Hajdu T, Rühl R, Galmarini CM, Szöllősi J, Nagy P. Hypoxia reduces the efficiency of elisidepsin by inhibiting hydroxylation and altering the structure of lipid rafts. Mar Drugs 2013; 11:4858-75. [PMID: 24317474 PMCID: PMC3877891 DOI: 10.3390/md11124858] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/26/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022] Open
Abstract
The mechanism of action of elisidepsin (PM02734, Irvalec®) is assumed to involve membrane permeabilization via attacking lipid rafts and hydroxylated lipids. Here we investigate the role of hypoxia in the mechanism of action of elisidepsin. Culturing under hypoxic conditions increased the half-maximal inhibitory concentration and decreased the drug’s binding to almost all cell lines which was reversed by incubation of cells with 2-hydroxy palmitic acid. The expression of fatty acid 2-hydroxylase was strongly correlated with the efficiency of the drug and inversely correlated with the effect of hypoxia. Number and brightness analysis and fluorescence anisotropy experiments showed that hypoxia decreased the clustering of lipid rafts and altered the structure of the plasma membrane. Although the binding of elisidepsin to the membrane is non-cooperative, its membrane permeabilizing effect is characterized by a Hill coefficient of ~3.3. The latter finding is in agreement with elisidepsin-induced clusters of lipid raft-anchored GFP visualized by confocal microscopy. We propose that the concentration of elisidepsin needs to reach a critical level in the membrane above which elisidepsin induces the disruption of the cell membrane. Testing for tumor hypoxia or the density of hydroxylated lipids could be an interesting strategy to increase the efficiency of elisidepsin.
Collapse
Affiliation(s)
- Anna Király
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (A.K.); (T.V.); (T.H.); (J.S.)
| | - Tímea Váradi
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (A.K.); (T.V.); (T.H.); (J.S.)
| | - Tímea Hajdu
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (A.K.); (T.V.); (T.H.); (J.S.)
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mail:
| | - Carlos M. Galmarini
- Cell Biology Department, PharmaMar, Avda de los Reyes 1, Pol. Ind. La Mina, Colmenar Viejo, Madrid 28770, Spain; E-Mail:
| | - János Szöllősi
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (A.K.); (T.V.); (T.H.); (J.S.)
- MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (A.K.); (T.V.); (T.H.); (J.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +36-52-412-623; Fax: +36-52-532-201
| |
Collapse
|
19
|
Dozsa A, Dezso B, Toth BI, Bacsi A, Poliska S, Camera E, Picardo M, Zouboulis CC, Bíró T, Schmitz G, Liebisch G, Rühl R, Remenyik E, Nagy L. PPARγ-mediated and arachidonic acid-dependent signaling is involved in differentiation and lipid production of human sebocytes. J Invest Dermatol 2013; 134:910-920. [PMID: 24129064 DOI: 10.1038/jid.2013.413] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 08/20/2013] [Accepted: 08/26/2013] [Indexed: 01/02/2023]
Abstract
The transcriptional basis of sebocyte differentiation and lipid production is mostly unclear. Peroxisome proliferator-activated receptor gamma (PPARγ), a lipid-activated transcription factor, has been implicated in differentiation and lipid metabolism of various cell types. Here, we show that PPARγ is differentially expressed in normal and pathological human sebocytes and appears to have roles in their differentiation and lipid production. We used laser-microdissected normal and pathological human sebaceous glands (SGs) and SZ95 cells (immortalized sebocyte cell line) analyzed by real-time quantitative PCR and immunohistochemistry. Lipids were analyzed by quantitative fluorimetry- and mass spectrometry-based approaches. We have observed that PPARγ and its target genes, ADRP (adipose differentiation-related protein) and PGAR (PPARγ angiopoietin-related protein), are expressed in sebocytes and show association with their level of differentiation. Also, PPARγ is present in normal and hyperplastic SG, whereas its expression levels are decreased in SG adenoma and SG carcinoma cells, reflecting a maturation-linked expression pattern. Furthermore, in SZ95 sebocytes, naturally occurring lipids, including arachidonic acid and arachidonic acid keto-metabolites (e.g., 5-KETE (5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid), 12-KETE (12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid)), appear to regulate PPARγ signaling pathways, which in turn modulate phospholipid biosynthesis and induce neutral lipid synthesis. Collectively, our findings highlight the importance of endogenous ligand-activated PPARγ signaling in human sebocyte biology and suggest that PPARγ might be a promising candidate for the clinical management of SG disorders.
Collapse
Affiliation(s)
- Aniko Dozsa
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Health Care Center, Miskolc, Hungary
| | - Balazs Dezso
- Department of Pathology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Balazs I Toth
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Debrecen, Hungary
| | - Attila Bacsi
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Szilard Poliska
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, Institute of Dermatology San Gallicano (IRCCS), Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, Institute of Dermatology San Gallicano (IRCCS), Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Tamás Bíró
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Debrecen, Hungary
| | - Gerd Schmitz
- Departments of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Departments of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Eva Remenyik
- Department of Dermatology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; DE-MTA "Lendület" Immunogenomics Research Group, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Debrecen, Hungary.
| |
Collapse
|
20
|
Ratio of pro-resolving and pro-inflammatory lipid mediator precursors as potential markers for aggressive periodontitis. PLoS One 2013; 8:e70838. [PMID: 23951021 PMCID: PMC3741366 DOI: 10.1371/journal.pone.0070838] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/23/2013] [Indexed: 12/28/2022] Open
Abstract
Aggressive periodontitis (AgP) is a rapidly progressing type of periodontal disease in otherwise healthy individuals which causes destruction of the supporting tissues of the teeth. The disease is initiated by pathogenic bacteria in the dental biofilm, and the severity of inflammation and attachment loss varies with the host response. Recently, there has been an increased interest in determining the role of lipid mediators in inflammatory events and the concept of pro-inflammatory and pro-resolution lipid mediators has been brought into focus also in periodontal disease. The present study aimed to determine the profile of omega-3 or n3- as well as omega-6 or n6- polyunsaturated fatty acids (PUFAs) and PUFA-metabolites of linoleic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in gingival crevicular fluid (GCF), saliva and serum in AgP patients and healthy controls. In total, 60 selected n3- and n6-PUFAs and various PUFA metabolites were measured using high performance liquid chromatography-tandem electrospray ionisation mass spectrometry (HPLC-ESI-MS-MS). Of these, 51 could be quantified in this study. The concentrations of the majority were low in saliva samples compared with serum and GCF, but were mainly higher in AgP patients compared with healthy controls in all three kinds of sample. Ratios of n3- to n6-PUFAs (DHA + EPA)/AA were significantly lower in the GCF of AgP patients than in the healthy controls. Furthermore, various ratios of the direct precursors of the pro-resolution lipid mediators (precursors of resolvins and protectins) were calculated against the precursors of mainly pro-inflammatory lipid mediators. These ratios were mainly lower in GCF and saliva of AgP patients, compared with healthy controls, but only reached significance in GCF (P<0.05). To conclude, the ratios of precursors of pro-resolution/pro-inflammatory lipid mediators seem to be more relevant for describing the disease status of AgP than the concentration of specific lipid mediators.
Collapse
|