1
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
2
|
Freund BE, Greco E, Okromelidze L, Mendez J, Tatum WO, Grewal SS, Middlebrooks EH. Clinical outcome of imaging-based programming for anterior thalamic nucleus deep brain stimulation. J Neurosurg 2023; 138:1008-1015. [PMID: 36087330 DOI: 10.3171/2022.7.jns221116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors hypothesized that the proximity of deep brain stimulator contacts to the anterior thalamic nucleus-mammillothalamic tract (ANT-MMT) junction determines responsiveness to treatment with ANT deep brain stimulation (DBS) in drug-resistant epilepsy and conducted this study to test that hypothesis. METHODS This retrospective study evaluated patients who had undergone ANT DBS electrode implantation and whose devices were programmed to stimulate nearest the ANT-MMT junction based on direct MRI visualization. The proximity of the active electrode to the ANT and the ANT-MMT junction was compared between responders (≥ 50% reduction in seizure frequency) and nonresponders. Linear regression was performed to assess the percentage of seizure reduction and distance to both the ANT and the ANT-MMT junction. RESULTS Four (57.1%) of 7 patients had ≥ 50% reduction in seizures. All 4 responders had at least one contact within 1 mm of the ANT-MMT junction, whereas the 3 patients with < 50% seizure improvement did not have a contact within 1 mm of the ANT-MMT junction. Additionally, the 4 responders demonstrated contact positioning closer to the ANT-MMT junction than the 3 nonresponders (mean distance from MMT: 0.7 mm on the left and 0.6 mm on the right in responders vs 3.0 mm on the left and 2.3 mm on the right in nonresponders). However, proximity of the electrode contact to any point in the ANT nucleus did not correlate with seizure reduction. Greater seizure improvement was correlated with a contact position closer to the ANT-MMT junction (R2 = 0.62, p = 0.04). Seizure improvement was not significantly correlated with proximity of the contact to any ANT border (R2 = 0.24, p = 0.26). CONCLUSIONS Obtained using a combination of direct visualization and targeted programming of the ANT-MMT junction, data in this study support the hypothesis that proximity to the ANT alone does not correlate with seizure reduction in ANT DBS, whereas proximity to the ANT-MMT junction does. These findings support the importance of direct targeting in ANT DBS, as well as imaging-informed programming. Additionally, the authors provide supportive evidence for future prospective trials using ANT-MMT junction for direct surgical targeting.
Collapse
|
3
|
Yan H, Wang X, Yu T, Ni D, Qiao L, Zhang X, Xu C, Shu W, Wang Y, Ren L. The anterior nucleus of the thalamus plays a role in the epileptic network. Ann Clin Transl Neurol 2022; 9:2010-2024. [PMID: 36334281 PMCID: PMC9735375 DOI: 10.1002/acn3.51693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES We investigated both the metabolic differences and interictal/ictal discharges of the anterior nucleus of the thalamus (ANT) in patients with epilepsy to clarify the relationship between the ANT and the epileptic network. METHODS Nineteen patients with drug-resistant epilepsy who underwent stereoelectroencephalography were studied. Metabolic differences in ANT were analyzed using [18F] fluorodeoxyglucose-positron emission tomography with three-dimensional (3D) visual and quantitative analyses. Interictal and ictal discharges in the ANT were analyzed using visual and time-frequency analyses. The relationship between interictal discharge and metabolic differences was analyzed. RESULTS We found that patients with temporal lobe epilepsy (TLE) showed significant metabolic differences in bilateral ANT compared with extratemporal lobe epilepsy in 3D visual and quantitative analyses. Four types of interictal activities were recorded from the ANT: spike, high-frequency oscillation (HFO), slow-wave, and α-rhythmic activity. Spike and HFO waveforms were recorded mainly in patients with TLE. Two spike patterns were recorded: synchronous and independent. In 83.3% of patients, ANT was involved during seizures. Three seizure onset types of ANT were recorded: low-voltage fast activity, rhythmic spikes, and theta band discharge. The time interval of seizure onset between the seizure onset zone and ANT showed two patterns: immediate and delayed. INTERPRETATION ANT can receive either interictal discharges or ictal discharges which propagate from the epileptogenic zones. Independent epileptic discharges can also be recorded from the ANT in some patients. Metabolic anomalies and epileptic discharges in the ANT indicate that the ANT plays a role in the epileptic network in most patients with epilepsy, especially TLE.
Collapse
Affiliation(s)
- Hao Yan
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Xueyuan Wang
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Tao Yu
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Duanyu Ni
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Liang Qiao
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Xiaohua Zhang
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Cuiping Xu
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Wei Shu
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yuping Wang
- Department of Neurology, Comprehensive Epilepsy Center of Beijing, Beijing Key Laboratory of NeuromodulationXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Liankun Ren
- Department of Neurology, Comprehensive Epilepsy Center of Beijing, Beijing Key Laboratory of NeuromodulationXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Lopes EM, Rego R, Rito M, Chamadoira C, Dias D, Cunha JPS. Estimation of ANT-DBS Electrodes on Target Positioning Based on a New Percept TM PC LFP Signal Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22176601. [PMID: 36081060 PMCID: PMC9460540 DOI: 10.3390/s22176601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/12/2023]
Abstract
Deep brain stimulation of the Anterior Nucleus of the Thalamus (ANT-DBS) is an effective therapy in epilepsy. Poorer surgical outcomes are related to deviations of the lead from the ANT-target. The target identification relies on the visualization of anatomical structures by medical imaging, which presents some disadvantages. This study aims to research whether ANT-LFPs recorded with the PerceptTM PC neurostimulator can be an asset in the identification of the DBS-target. For this purpose, 17 features were extracted from LFPs recorded from a single patient, who stayed at an Epilepsy Monitoring Unit for a 5-day period. Features were then integrated into two machine learning (ML)-based methodologies, according to different LFP bipolar montages: Pass1 (nonadjacent channels) and Pass2 (adjacent channels). We obtained an accuracy of 76.6% for the Pass1-classifier and 83.33% for the Pass2-classifier in distinguishing locations completely inserted in the target and completely outside. Then, both classifiers were used to predict the target percentage of all combinations, and we found that contacts 3 (left hemisphere) and 2 and 3 (right hemisphere) presented higher signatures of the ANT-target, which agreed with the medical images. This result opens a new window of opportunity for the use of LFPs in the guidance of DBS target identification.
Collapse
Affiliation(s)
- Elodie Múrias Lopes
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ricardo Rego
- Neurophysiology Unit, Neurology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Manuel Rito
- Neurosurgery Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Clara Chamadoira
- Neurosurgery Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Duarte Dias
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - João Paulo Silva Cunha
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Gummadavelli A, Englot DJ, Schwalb JM, Wu C, Gonzalez-Martinez J, Niemat J, Gerrard JL. ASSFN Position Statement on Deep Brain Stimulation for Medication-Refractory Epilepsy. Neurosurgery 2022; 90:636-641. [PMID: 35271523 PMCID: PMC9514731 DOI: 10.1227/neu.0000000000001923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
Neuromodulation has taken a foothold in the landscape of surgical treatment for medically refractory epilepsies and offers additional surgical treatment options for patients who are not candidates for resective/ablative surgery. Approximately one third of patients with epilepsy suffer with medication-refractory epilepsy. A persistent underuse of epilepsy surgery exists. Neuromodulation treatments including deep brain stimulation (DBS) expand the surgical options for patients with epilepsy and provide options for patients who are not candidates for resective surgery. DBS of the bilateral anterior nucleus of the thalamus is an Food and Drug Administration-approved, safe, and efficacious treatment option for patients with refractory focal epilepsy. The purpose of this consensus position statement is to summarize evidence, provide recommendations, and identify indications and populations for future investigation in DBS for epilepsy. The recommendations of the American Society of Functional and Stereotactic Neurosurgeons are based on several randomized and blinded clinical trials with high-quality data to support the use of DBS to the anterior nucleus of the thalamus for the treatment of refractory focal-onset seizures.
Collapse
Affiliation(s)
- Abhijeet Gummadavelli
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Dario J. Englot
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA;
| | - Jason M. Schwalb
- Department of Neurological Surgery, Henry Ford Health System, Detroit, Michigan, USA;
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA;
| | - Jorge Gonzalez-Martinez
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA;
| | - Joseph Niemat
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jason L. Gerrard
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
6
|
Middlebrooks EH, He X, Grewal SS, Keller SS. Neuroimaging and thalamic connectomics in epilepsy neuromodulation. Epilepsy Res 2022; 182:106916. [PMID: 35367691 DOI: 10.1016/j.eplepsyres.2022.106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
Neuromodulation is an increasingly utilized therapy for the treatment of people with drug-resistant epilepsy. To date, the most common and effective target has been the thalamus, which is known to play a key role in multiple forms of epilepsy. Neuroimaging has facilitated rapid developments in the understanding of functional targets, surgical and programming techniques, and the effects of thalamic stimulation. In this review, the role of neuroimaging in neuromodulation is explored. First, the structural and functional changes of the thalamus in common epilepsy syndromes are discussed as the rationale for neuromodulation of the thalamus. Next, methods for imaging different thalamic nuclei are presented, as well as rationale for the need of direct surgical targeting rather than reliance on traditional stereotactic coordinates. Lastly, we discuss the potential role of neuroimaging in assessing the effects of thalamic stimulation and as a potential biomarker for neuromodulation outcomes.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| |
Collapse
|
7
|
Boutet A, Loh A, Chow CT, Taha A, Elias GJB, Neudorfer C, Germann J, Paff M, Zrinzo L, Fasano A, Kalia SK, Steele CJ, Mikulis D, Kucharczyk W, Lozano AM. A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. J Neurosurg 2021; 135:1445-1458. [PMID: 33770759 DOI: 10.3171/2020.8.jns201125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/13/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Historically, preoperative planning for functional neurosurgery has depended on the indirect localization of target brain structures using visible anatomical landmarks. However, recent technological advances in neuroimaging have permitted marked improvements in MRI-based direct target visualization, allowing for refinement of "first-pass" targeting. The authors reviewed studies relating to direct MRI visualization of the most common functional neurosurgery targets (subthalamic nucleus, globus pallidus, and thalamus) and summarize sequence specifications for the various approaches described in this literature. METHODS The peer-reviewed literature on MRI visualization of the subthalamic nucleus, globus pallidus, and thalamus was obtained by searching MEDLINE. Publications examining direct MRI visualization of these deep brain stimulation targets were included for review. RESULTS A variety of specialized sequences and postprocessing methods for enhanced MRI visualization are in current use. These include susceptibility-based techniques such as quantitative susceptibility mapping, which exploit the amount of tissue iron in target structures, and white matter attenuated inversion recovery, which suppresses the signal from white matter to improve the distinction between gray matter nuclei. However, evidence confirming the superiority of these sequences over indirect targeting with respect to clinical outcome is sparse. Future targeting may utilize information about functional and structural networks, necessitating the use of resting-state functional MRI and diffusion-weighted imaging. CONCLUSIONS Specialized MRI sequences have enabled considerable improvement in the visualization of common deep brain stimulation targets. With further validation of their ability to improve clinical outcomes and advances in imaging techniques, direct visualization of targets may play an increasingly important role in preoperative planning.
Collapse
Affiliation(s)
- Alexandre Boutet
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | - Ludvic Zrinzo
- 3Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Alfonso Fasano
- 4Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology, University of Toronto
- 5Krembil Brain Institute, Toronto, Ontario
| | | | - Christopher J Steele
- 6Department of Psychology, Concordia University, Montreal, Quebec, Canada; and
- 7Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - David Mikulis
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | - Walter Kucharczyk
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | | |
Collapse
|
8
|
Ryvlin P, Rheims S, Hirsch LJ, Sokolov A, Jehi L. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol 2021; 20:1038-1047. [PMID: 34710360 DOI: 10.1016/s1474-4422(21)00300-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
Three neuromodulation therapies have been appropriately tested and approved in refractory focal epilepsies: vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS), and closed-loop responsive neurostimulation of the epileptogenic zone or zones. These therapies are primarily palliative. Only a few individuals have achieved complete freedom from seizures for more than 12 months with these therapies, whereas more than half have benefited from long-term reduction in seizure frequency of more than 50%. Implantation-related adverse events primarily include infection and pain at the implant site. Intracranial haemorrhage is a frequent adverse event for ANT-DBS and responsive neurostimulation. Other stimulation-specific side-effects are observed with VNS and ANT-DBS. Biomarkers to predict response to neuromodulation therapies are not available, and high-level evidence to aid decision making about when and for whom these therapies should be preferred over other antiepileptic treatments is scant. Future studies are thus needed to address these shortfalls in knowledge, approve other forms of neuromodulation, and develop personalised closed-loop therapies with embedded machine learning. Until then, neuromodulation could be considered for individuals with intractable seizures, ideally after the possibility of curative surgical treatment has been carefully assessed and ruled out or judged less appropriate.
Collapse
Affiliation(s)
- Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon 1 University Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Epilepsy Institute, Lyon, France
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Arseny Sokolov
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lara Jehi
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
9
|
Yu K, Ren Z, Yu T, Wang X, Hu Y, Guo S, Li J, Li Y. Direct Targeting of the Anterior Nucleus of the Thalamus via 3 T Quantitative Susceptibility Mapping. Front Neurosci 2021; 15:685050. [PMID: 34290583 PMCID: PMC8287058 DOI: 10.3389/fnins.2021.685050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 12/18/2022] Open
Abstract
Objective: Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a potentially effective, minimally invasive, and reversible method for treating epilepsy. The goal of this study was to explore whether 3 T quantitative susceptibility mapping (QSM) could delineate the ANT from surrounding structures, which is important for the direct targeting of DBS surgery. Methods: We obtained 3 T QSM, T1-weighted (T1w), and T2-weighted (T2w) images from 11 patients with Parkinson’s disease or dystonia who received subthalamic nucleus (STN) or globus pallidus interna (GPi) DBS surgery in our center. The ANT and its surrounding white matter structures on QSM were compared with available atlases. The contrast-to-noise ratios (CNRs) of ANT relative to the external medullary lamina (eml) were compared across the three imaging modalities. Additionally, the morphology and location of the ANT were depicted in the anterior commissure (AC)-posterior commissure (PC)-based system. Results: ANT can be clearly distinguished from the surrounding white matter laminas and appeared hyperintense on QSM. The CNRs of the ANT-eml on QSM, T1w, and T2w images were 10.20 ± 4.23, 1.71 ± 1.03, and 1.35 ± 0.70, respectively. One-way analysis of variance (ANOVA) indicated significant differences in CNRs among QSM, T1w, and T2w imaging modalities [F(2) = 85.28, p < 0.0001]. In addition, both the morphology and location of the ANT were highly variable between patients in the AC–PC-based system. Conclusion: The potential utility of QSM for the visualization of ANTs in clinical imaging is promising and may be suitable for targeting the ANT for DBS to treat epilepsy.
Collapse
Affiliation(s)
- Kaijia Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yongsheng Hu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Song Guo
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jianyu Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Sweeney-Reed CM, Buentjen L, Voges J, Schmitt FC, Zaehle T, Kam JWY, Kaufmann J, Heinze HJ, Hinrichs H, Knight RT, Rugg MD. The role of the anterior nuclei of the thalamus in human memory processing. Neurosci Biobehav Rev 2021; 126:146-158. [PMID: 33737103 DOI: 10.1016/j.neubiorev.2021.02.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Extensive neuroanatomical connectivity between the anterior thalamic nuclei (ATN) and hippocampus and neocortex renders them well-placed for a role in memory processing, and animal, lesion, and neuroimaging studies support such a notion. The deep location and small size of the ATN have precluded their real-time electrophysiological investigation during human memory processing. However, ATN electrophysiological recordings from patients receiving electrodes implanted for deep brain stimulation for pharmacoresistant focal epilepsy have enabled high temporal resolution study of ATN activity. Theta frequency synchronization of ATN and neocortical oscillations during successful memory encoding, enhanced phase alignment, and coupling between ATN local gamma frequency activity and frontal neocortical and ATN theta oscillations provide evidence of an active role for the ATN in memory encoding, potentially integrating information from widespread neocortical sources. Greater coupling of a broader gamma frequency range with theta oscillations at rest than during memory encoding provides additional support for the hypothesis that the ATN play a role in selecting local, task-relevant high frequency activity associated with particular features of a memory trace.
Collapse
Affiliation(s)
- Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Dept. of Neurology, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.
| | - Lars Buentjen
- Dept. of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jürgen Voges
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Tino Zaehle
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Julia W Y Kam
- Department of Psychology, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, CA, USA
| | - Jörn Kaufmann
- Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Hermann Hinrichs
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA
| |
Collapse
|
11
|
Schaper FLWVJ, Plantinga BR, Colon AJ, Wagner GL, Boon P, Blom N, Gommer ED, Hoogland G, Ackermans L, Rouhl RPW, Temel Y. Deep Brain Stimulation in Epilepsy: A Role for Modulation of the Mammillothalamic Tract in Seizure Control? Neurosurgery 2021; 87:602-610. [PMID: 32421806 PMCID: PMC8210468 DOI: 10.1093/neuros/nyaa141] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/16/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) can improve seizure control for patients with drug-resistant epilepsy (DRE). Yet, one cannot overlook the high discrepancy in efficacy among patients, possibly resulting from differences in stimulation site. OBJECTIVE To test the hypothesis that stimulation at the junction of the ANT and mammillothalamic tract (ANT-MTT junction) increases seizure control. METHODS The relationship between seizure control and the location of the active contacts to the ANT-MTT junction was investigated in 20 patients treated with ANT-DBS for DRE. Coordinates and Euclidean distance of the active contacts relative to the ANT-MTT junction were calculated and related to seizure control. Stimulation sites were mapped by modelling the volume of tissue activation (VTA) and generating stimulation heat maps. RESULTS After 1 yr of stimulation, patients had a median 46% reduction in total seizure frequency, 50% were responders, and 20% of patients were seizure-free. The Euclidean distance of the active contacts to the ANT-MTT junction correlates to change in seizure frequency (r2 = 0.24, P = .01) and is ∼30% smaller (P = .015) in responders than in non-responders. VTA models and stimulation heat maps indicate a hot-spot at the ANT-MTT junction for responders, whereas non-responders had no evident hot-spot. CONCLUSION Stimulation at the ANT-MTT junction correlates to increased seizure control. Our findings suggest a relationship between the stimulation site and therapy response in ANT-DBS for epilepsy with a potential role for the MTT. DBS directed at white matter merits further exploration for the treatment of epilepsy.
Collapse
Affiliation(s)
- Frédéric L W V J Schaper
- Department of Neurology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Birgit R Plantinga
- Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Albert J Colon
- Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Heeze, The Netherlands.,Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Maastricht, The Netherlands
| | - G Louis Wagner
- Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Heeze, The Netherlands.,Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Maastricht, The Netherlands
| | - Paul Boon
- Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Heeze, The Netherlands.,Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Neurology, University Hospital Ghent, Ghent, Belgium
| | - Nadia Blom
- Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Erik D Gommer
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Maastricht, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
12
|
Järvenpää S, Lehtimäki K, Rainesalo S, Möttönen T, Peltola J. Improving the effectiveness of ANT DBS therapy for epilepsy with optimal current targeting. Epilepsia Open 2020; 5:406-417. [PMID: 32913949 PMCID: PMC7469781 DOI: 10.1002/epi4.12407] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Deep brain stimulation of the ANT is a novel treatment option in refractory epilepsy with an established efficacy at the group level. However, data on the effect of individualized programming are currently lacking. We report the effect of programming changes on outcome in deep brain stimulation of anterior nucleus of thalamus (ANT DBS). Secondly, we investigated whether the effect differs between seizure types. Thirdly, we compared the response status between patients with stimulation contacts verified inside the ANT with patients with contacts located outside of ANT. METHODS The participants were 27 consecutive patients with ANT DBS implantation with at least two-year follow-up. Seizures were subdivided into focal aware (FAS), focal impaired awareness (FIAS), and focal to bilateral tonic-clonic seizures (FBTCS). The patients' seizure diaries were analyzed retrospectively to assess changes in different seizure types. Active contact locations for each patient were verified from preoperative MRI and postoperative CT fusion images using SureTune III (Medtronic Inc, Minneapolis, MN) software. RESULTS A significant reduction in monthly mean seizure frequency occurred in FIAS: 56% at two-year and 65% at five-year follow-up. The effects on FAS and FBTCS were less pronounced. Patients with contacts inside the ANT or on the anterolateral border of ANT experienced a greater reduction in seizure frequency than patients with outside-ANT contacts. Ultimately, seven patients became responders due to changes in DBS programming or repositioning of contacts, increasing our responder rate from 44% to 70% as measured by a seizure reduction of at least 50%. SIGNIFICANCE ANT DBS appears to be especially effective in reducing FIAS, when the appropriately chosen contacts are activated.
Collapse
Affiliation(s)
- Soila Järvenpää
- Department of Neurosciences and RehabilitationTampere University HospitalTampereFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Kai Lehtimäki
- Department of Neurosciences and RehabilitationTampere University HospitalTampereFinland
| | - Sirpa Rainesalo
- Department of Neurosciences and RehabilitationTampere University HospitalTampereFinland
| | - Timo Möttönen
- Department of Neurosciences and RehabilitationTampere University HospitalTampereFinland
| | - Jukka Peltola
- Department of Neurosciences and RehabilitationTampere University HospitalTampereFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| |
Collapse
|
13
|
Zheng H, Chengcheng W, Bin J, Chaochao W, Hongying Z, Wenqiang G, Bin L, Hailong T, Zhigang W. Deep Brain Stimulation of Anterior Thalamic Nucleus for Treatment of Patient with Tuberous Sclerosis-Related Refractory Epilepsy. World Neurosurg 2020; 138:141-144. [PMID: 32169621 DOI: 10.1016/j.wneu.2020.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Neuromodulation is recommended for patients with refractory tuberous sclerosis related epilepsy (TRE) who are unable to localize epileptogenic nodules after comprehensive preoperative evaluation or for patients and families who do not agree to resection. CASE DESCRIPTION We report a patient with refractory TRE who received deep brain stimulation of anterior thalamic nucleus (ANT-DBS) and achieved a satisfactory response. To our knowledge, this is the first case of TRE being treated with ANT-DBS. A 22-year-old male was admitted to the hospital for refractory TRE seeking surgical treatment. Seizures were mainly manifested by deep temporal and frontal lobe epilepsy and suspected to originate in the limbic system. Magnetic resonance imaging revealed extensive potentially epileptogenic nodules in the brain lacking significant nodules. Scalp electroencephalogram showed a comprehensive, bilateral synchronous low-voltage rapid rhythm, unable to localize seizure origin. We performed bilateral ANT-DBS according to the preoperative evaluation, and the frequency and intensity of seizures were significantly reduced after the 15-month follow-up (P <0.05, Student's t-test). Our case extends the therapeutic indications of ANT-DBS to a certain extent, providing a neuromodulation alternative to vagus nerve stimulation for patients with TRE who are unsuitable candidates or refuse resection.
Collapse
Affiliation(s)
- He Zheng
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Wang Chengcheng
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Jiang Bin
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Wang Chaochao
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Zhang Hongying
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Guo Wenqiang
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Liu Bin
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Tian Hailong
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Wang Zhigang
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China.
| |
Collapse
|
14
|
Lehtimäki K, Coenen VA, Gonçalves Ferreira A, Boon P, Elger C, Taylor RS, Ryvlin P, Gil-Nagel A, Gielen F, Brionne TC, Abouihia A, Beth G. The Surgical Approach to the Anterior Nucleus of Thalamus in Patients With Refractory Epilepsy: Experience from the International Multicenter Registry (MORE). Neurosurgery 2020; 84:141-150. [PMID: 29554309 DOI: 10.1093/neuros/nyy023] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/22/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Medtronic Registry for Epilepsy (MORE; Medtronic Inc, Dublin, Ireland) is an open label observational study evaluating the long-term effectiveness, safety, and performance of deep brain stimulation (DBS) of the anterior nucleus of thalamus (ANT) for the treatment of refractory epilepsy. OBJECTIVE To compare the difference in success rate of placing contacts at ANT-target region (ANT-TR) between transventricular (TV) and extraventricular (EV) lead trajectories in 73 ANT-DBS implants in 17 European centers participating in the MORE registry. METHODS The success rate of placing contacts at ANT-TR was evaluated using a screening method combining both individual patient imaging information and stereotactic atlas information to identify contacts at ANT-TR. RESULTS EV lead trajectory was used in 53% of the trajectories. Approximately, 90% of the TV lead trajectories had at least 1 contact at ANT-TR, vs only 71% of the EV lead trajectories. The success rate for placing at least 1 contact at ANT-TR bilaterally was 84% for TV implants and 58% for EV implants (P < .05; Fisher's exact). No intracranial bleedings were observed, but 1 cortical infarct was reported following EV lead trajectory. CONCLUSION The results of this registry support the use of TV lead trajectories for ANT-DBS as they have a higher probability in placing contacts at ANT-TR, without appearing to compromise procedural safety. Follow-up data collection is continuing in the MORE registry. These data will provide outcomes associated with TV and EV trajectories.
Collapse
Affiliation(s)
- Kai Lehtimäki
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany
| | | | - Paul Boon
- Department of Neurology, Ghent University Hospital, Ghent, Belgium.,Kempenhaeghe, Academic Center for Epileptology, Heeze, The Netherlands
| | - Christian Elger
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Rod S Taylor
- Institute of Health Research (Primary Care), University of Exeter Medical School, Exeter, United Kingdom
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Le Centre hospitalier universitaire vaudois, Lausanne, Switzerland
| | - Antonio Gil-Nagel
- Department of Neurology, Hospital Ruber Internacional, Madrid, Spain
| | - Frans Gielen
- Medtronic Bakken Research Center, Maastricht, The Netherlands
| | | | | | - Grégory Beth
- Medtronic International Trading Sarl, Tolochenaz, Switzerland
| | | |
Collapse
|
15
|
Middlebrooks EH, Grewal SS, Stead M, Lundstrom BN, Worrell GA, Van Gompel JJ. Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg Focus 2019; 45:E7. [PMID: 30064322 DOI: 10.3171/2018.5.focus18151] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a promising therapy for refractory epilepsy. Unfortunately, the variability in outcomes from ANT DBS is not fully understood. In this pilot study, the authors assess potential differences in functional connectivity related to the volume of tissue activated (VTA) in ANT DBS responders and nonresponders as a means for better understanding the mechanism of action and potentially improving DBS targeting. METHODS This retrospective analysis consisted of 6 patients who underwent ANT DBS for refractory epilepsy. Patients were classified as responders (n = 3) if their seizure frequency decreased by at least 50%. The DBS electrodes were localized postoperatively and VTAs were computationally generated based on DBS programming settings. VTAs were used as seed points for resting-state functional MRI connectivity analysis performed using a control dataset. Differences in cortical connectivity to the VTA were assessed between the responder and nonresponder groups. RESULTS The ANT DBS responders showed greater positive connectivity with the default mode network compared to nonresponders, including the posterior cingulate cortex, medial prefrontal cortex, inferior parietal lobule, and precuneus. Interestingly, there was also a consistent anticorrelation with the hippocampus seen in responders that was not present in nonresponders. CONCLUSIONS Based on their pilot study, the authors observed that successful ANT DBS in patients with epilepsy produces increased connectivity in the default mode network, which the authors hypothesize increases the threshold for seizure propagation. Additionally, an inhibitory effect on the hippocampus mediated through increased hippocampal γ-aminobutyric acid (GABA) concentration may contribute to seizure suppression. Future studies are planned to confirm these findings.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Departments of1Radiology and.,2Neurosurgery, Mayo Clinic, Jacksonville, Florida; and
| | | | | | | | | | | |
Collapse
|
16
|
Koeppen JA, Nahravani F, Kramer M, Voges B, House PM, Gulberti A, Moll CKE, Westphal M, Hamel W. Electrical Stimulation of the Anterior Thalamus for Epilepsy: Clinical Outcome and Analysis of Efficient Target. Neuromodulation 2018; 22:465-471. [PMID: 30295358 DOI: 10.1111/ner.12865] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/15/2018] [Accepted: 07/01/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the anterior thalamic complex (ANT) is an adjunctive therapy for pharmacoresistant epilepsy. To define the most efficient target in DBS for epilepsy, we investigate clinical data, position of leads, usability of atlas data compared to electric field modeling based on programming parameters. METHODS Data from ten consecutive patients who underwent ANT-DBS were analyzed. The mammillothalamic tract (MTT), an internal landmark for direct stereotactic targeting, was segmented from MRI. Centers of stimulation were determined and their positions relative to ventricles and the MTT were analyzed. Two 3D thalamus atlases were transformed to segmented patient's thalami and proportions of activated nuclei were calculated. RESULTS Our data indicate higher response rates with a center of stimulation 5 mm lateral to the wall of the third ventricle (R2 for reduction of focal seizure frequency and distance to the wall of the third ventricle = 0.48, p = 0.026). For reduction of focal seizures, a strong positive correlation with the dorsal distance to the midcommissural plane was found (R2 = 0.66, p = 0.004). In one 3D atlas, stimulation of internal medullary lamina (IML) correlated strongly positive with response rates, which, however, did not reach statistical significance (R2 = 0.69, p = 0.17 for tonic-clonic seizures). All electrical fields covered the diameter of the MTT. The position of the MTT in the thalamus was highly variable (range: x-coordinate 4.0 to 7.3 mm, y-coordinate -1.3 to 5.1 mm in AC-PC space). CONCLUSIONS The distance of the active contact to the lateral wall of the third ventricle, MTT and the ventrodorsal distance to midcommissural plane appear to be relevant for optimal target planning. For reduction of focal seizure frequency, we found best response rates with a center of stimulation 5 mm lateral to the wall of the third ventricle, and a lead tip 10 mm dorsal of the midcommissural plane.
Collapse
Affiliation(s)
| | - Fahimeh Nahravani
- Department for Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Martin Kramer
- Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Berthold Voges
- Hamburg Epilepsy Center, Protestant Hospital Alsterdorf, Hamburg, Germany
| | | | - Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Karl Eberhard Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department for Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department for Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Grewal SS, Middlebrooks EH, Kaufmann TJ, Stead M, Lundstrom BN, Worrell GA, Lin C, Baydin S, Van Gompel JJ. Fast gray matter acquisition T1 inversion recovery MRI to delineate the mammillothalamic tract for preoperative direct targeting of the anterior nucleus of the thalamus for deep brain stimulation in epilepsy. Neurosurg Focus 2018; 45:E6. [DOI: 10.3171/2018.4.focus18147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When medically intractable epilepsy is multifocal or focal but poorly localized, neuromodulation can be useful therapy. One such technique is deep brain stimulation (DBS) targeting the anterior nucleus of the thalamus (ANT). Unfortunately, the ANT is difficult to visualize in standard MRI sequences and its indirect targeting is difficult because of thalamic variability and atrophy in patients with epilepsy. The following study describes the novel use of the fast gray matter acquisition T1 inversion recovery (FGATIR) MRI sequence to delineate the mammillothalamic tract for direct targeting of the ANT through visualizing the termination of the mammillothalamic tract in the ANT.The day prior to surgery in a 19-year-old, right-handed woman with a 5-year history of epilepsy, MRI was performed on a 3-T Siemens Prisma scanner (Siemens AG, Healthcare Sector) using a 64-channel head and neck coil. As part of the imaging protocol, noncontrast magnetization-prepared rapid gradient echo (MP-RAGE) and diffusion tensor imaging (DTI) sequences were obtained for targeting purposes. The ANT was directly targeted using the FGATIR sequence, and bilateral Medtronic 3389 leads were placed. At the last follow-up (2 months), the patient reported an approximate 75% decrease in seizure frequency, as well as a decrease in seizure severity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chen Lin
- 2Radiology, Mayo Clinic, Jacksonville, Florida
| | - Serhat Baydin
- 5Department of Neurosurgery, Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Turkey
| | | |
Collapse
|
18
|
Sitnikov AR, Grigoryan YA, Mishnyakova LP. Bilateral stereotactic lesions and chronic stimulation of the anterior thalamic nuclei for treatment of pharmacoresistant epilepsy. Surg Neurol Int 2018; 9:137. [PMID: 30105131 PMCID: PMC6069370 DOI: 10.4103/sni.sni_25_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Background: The use of the anterior nucleus of thalamus (ANT) as a target for treatment of pharmacoresistant epilepsy is based on its crucial role in seizure propagation. We describe results of chronic bilateral ANT stimulation and bilateral ANT lesions in 31 patients with refractory epilepsy. Methods: ANT DBS was performed in 12 patients (group I) and bilateral stereotactic radiofrequency lesions of ANT were performed in 19 patients (group II). Targeting was based on stereotactic atlas information with correction of the final coordinates according to the location of anatomical landmarks and intraoperative microelectrode recording data. Results: Both groups were similar in age, gender, seizures frequency, and duration of disease. The median x, y, and z coordinates of ANT were found to be 2.9, 5, and 11 mm anterior, lateral, and superior to the mid-commissural point, respectively. Mean seizures reduction reached 80.3% in group of patients with ANT DBS with two nonresponders and 91.2% in group of patients with lesions. Five patients from group I and three patients from group II became seizure-free. The morbidity rate was low in both groups. Conclusions: Stereotactic anterior thalamotomy and chronic ANT stimulation are both effective for seizure control in epilepsy originated from frontal and temporal lobes. ANT lesions and stimulation were more effective for secondary-generalized seizures compared to simple partial seizures.
Collapse
Affiliation(s)
- A R Sitnikov
- Federal Centre of Treatment and Rehabilitation of Ministry of Healthcare of Russian Federation, Ivankovskoe, Moscow, Russia
| | - Yu A Grigoryan
- Federal Centre of Treatment and Rehabilitation of Ministry of Healthcare of Russian Federation, Ivankovskoe, Moscow, Russia
| | - L P Mishnyakova
- Federal Centre of Treatment and Rehabilitation of Ministry of Healthcare of Russian Federation, Ivankovskoe, Moscow, Russia
| |
Collapse
|
19
|
Son BC, Shon YM, Kim SH, Kim J, Ko HC, Choi JG. Technical Implications in Revision Surgery for Deep Brain Stimulation (DBS) of the Thalamus for Refractory Epilepsy. J Epilepsy Res 2018; 8:12-19. [PMID: 30090757 PMCID: PMC6066694 DOI: 10.14581/jer.18003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/20/2018] [Indexed: 11/09/2022] Open
Abstract
Background and Purpose Implantation of deep brain stimulation (DBS) electrodes in the anterior nucleus of the thalamus (ANT) or the centromedian nucleus (CM), for the treatment of refractory epilepsy, is technically demanding. To enhance the accuracy of electrode placement within the ANT and CM, we analyzed our experience with electrode revision surgery in ANT and CM DBS and investigated the cause of misplacement and verifying methods for accurate placement. Methods A retrospective analysis of the medical records of 23 patients who underwent DBS for refractory epilepsy during the period from 2013 to 2016 was performed. Results Misplacement of the electrode occurred in 1 (25%) of 4 ANT DBS and 2 (14.3%) of 14 patients with CM DBS performed in our institute, and revision surgery was performed in three patients. During this period, we performed three revision surgeries for misplaced electrodes in ANT DBS that were performed at another hospital. Therefore, we performed six revision surgeries (four in ANT, two in CM) for mistargeted DBS electrodes for thalamic DBS. Transventricular lead placement and an anatomical targeting of the ANT was the cause of misplacement in the ANT and intraoperative brain shift was found to be the cause in the CM. For verification of the location of lead placement, magnetic resonance imaging (MRI) was superior to computed tomography and electroencephalography (EEG). Conclusions To reduce the rate of electrode misplacement for refractory epilepsy, image-based targeting of the ANT according to individual anatomical variation, and efforts to minimize intraoperative brain shift are essential. To verify the location of the electrode, MRI examination is mandatory in DBS for refractory epilepsy.
Collapse
Affiliation(s)
- Byung-Chul Son
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seong Hoon Kim
- Department of Neurology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Jiyeon Kim
- Department of Neurology, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan, Korea
| | - Hak-Cheol Ko
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin-Gyu Choi
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
20
|
Son BC, Choi JG, Ha SW. Cerebrospinal Fluid Egress from the Quadripolar Deep Brain Stimulation Electrode for Anterior Nucleus of the Thalamus for Refractory Epilepsy. Asian J Neurosurg 2018; 13:407-410. [PMID: 29682045 PMCID: PMC5898116 DOI: 10.4103/ajns.ajns_148_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is an effective treatment for refractory epilepsy. Due to the unique location of ANT in the thalamus facing the lateral and third ventricles, transventricular DBS lead placement is an essential part of ANT DBS. However, there is no report regarding hardware problems including impedance variability in transventricular ANT DBS due to limited experience. A 45-year-old male patient with previously effective, bilateral ANT DBS presented with increasing seizure frequency and a shortened battery longevity within 2 years. Magnetic resonance imaging showed that the left-sided DBS lead was in the third ventricle leaning on the medial wall of ANT. Electrode revision was performed. Upon disconnecting the proximal lead from the extension connection, cerebrospinal fluid egress through fine gaps between the metallic electrode contacts, and electrode spacing was observed. This case raises a concern about the transventricular approach for ANT lead placement because the currently available DBS electrode lead is not waterproofed. A careful, longitudinal follow-up of DBS impedance for ANT DBS is warranted.
Collapse
Affiliation(s)
- Byung-Chul Son
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Gyu Choi
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Woo Ha
- Department of Neurosurgery, Chosun University Hospital, College of Medicine, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
21
|
Long-term follow-up of anterior thalamic deep brain stimulation in epilepsy: A 11-year, single center experience. Seizure 2017; 52:154-161. [DOI: 10.1016/j.seizure.2017.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/07/2017] [Accepted: 10/12/2017] [Indexed: 11/20/2022] Open
|
22
|
Sweeney-Reed CM, Zaehle T, Voges J, Schmitt FC, Buentjen L, Borchardt V, Walter M, Hinrichs H, Heinze HJ, Rugg MD, Knight RT. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest. Front Hum Neurosci 2017; 11:358. [PMID: 28775684 PMCID: PMC5518534 DOI: 10.3389/fnhum.2017.00358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/22/2017] [Indexed: 12/15/2022] Open
Abstract
Cross-frequency coupling (CFC) between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC), is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN) during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz) phase and high frequency band (80–150 Hz) amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.
Collapse
Affiliation(s)
- Catherine M Sweeney-Reed
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Tino Zaehle
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Jürgen Voges
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Friedhelm C Schmitt
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Lars Buentjen
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Viola Borchardt
- Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Martin Walter
- Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Psychiatry, Eberhard Karls UniversityTübingen, Germany
| | - Hermann Hinrichs
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Otto von Guericke UniversityMagdeburg, Germany
| | - Hans-Jochen Heinze
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Otto von Guericke UniversityMagdeburg, Germany
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of TexasDallas, TX, United States
| | - Robert T Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
23
|
Cukiert A, Lehtimäki K. Deep brain stimulation targeting in refractory epilepsy. Epilepsia 2017; 58 Suppl 1:80-84. [DOI: 10.1111/epi.13686] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Arthur Cukiert
- ABC Faculty of Medicine; Sao Paulo Epilepsy Clinic Brazil
| | - Kai Lehtimäki
- Department of Neurosciences and Rehabilitation; Tampere University Hospital; Tampere Finland
| |
Collapse
|
24
|
Wu C, D'Haese PF, Pallavaram S, Dawant BM, Konrad P, Sharan AD. Variations in Thalamic Anatomy Affect Targeting in Deep Brain Stimulation for Epilepsy. Stereotact Funct Neurosurg 2016; 94:387-396. [PMID: 27846633 DOI: 10.1159/000449009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Thalamic size and shape vary significantly across patients - with changes specific to the anterior thalamus occurring with age and in the setting of chronic epilepsy. Such ambiguity raises concerns regarding electrode position and potential implications for seizure outcomes. METHODS MRIs from 6 patients from a single center underwent quantitative analysis. In addition to direct measurements from postimplantation MRIs, the CRAnialVault Explorer suite was used to normalize electrode position to a common reference system. Relationships between thalamic dimensions, electrode location, and seizure outcome were analyzed. RESULTS Although this study group was too small to sufficiently power statistical analysis, general trends were identified. There was a trend towards smaller thalamic volumes in nonresponders. Electrode locations demonstrated more variation after normalization. There was a trend towards a more lateral, posterior, and inferior electrode position in nonresponders. CONCLUSIONS Variations in thalamic shape and volume necessitate direct targeting. Given that changes occur to thalamic anatomy with age and in the setting of epilepsy, improved methods for visualizing and targeting the anterior nucleus are necessary. Pronounced thalamic atrophy may preclude proper electrode placement and serve as a poor prognostic indicator. A greater understanding of thalamic anatomy and connectivity is necessary to optimize deep brain stimulation for epilepsy.
Collapse
Affiliation(s)
- Chengyuan Wu
- Division of Epilepsy and Neuromodulation Neurosurgery, Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pa., USA
| | | | | | | | | | | |
Collapse
|
25
|
Son BC, Shon YM, Kim SH, Choi JG, Kim J. Relationship between Postoperative EEG Driving Response and Lead Location in Deep Brain Stimulation of the Anterior Nucleus of the Thalamus for Refractory Epilepsy. Stereotact Funct Neurosurg 2016; 94:336-341. [PMID: 27723660 DOI: 10.1159/000449012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Interpreting the postoperative electroencephalographic (EEG) driving response (DR) as an indicator of electrode placement within the thalamic nucleus in deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) for refractory epilepsy is controversial. MATERIALS AND METHODS We retrospectively investigated the relationship between postoperative EEG DR and the location of 11 electrodes in 6 patients who underwent ANT DBS for refractory epilepsy. RESULTS Cerebral synchronizing EEG DR was observed in 10 electrodes. However, 9 of the 11 electrodes were located within the ANT. For the 2 electrodes that missed the ANT, DR was observed in 1 misplaced electrode facing the anterior surface of the ANT within the third ventricle. The other misplaced electrode without DR elicitation showed a DR after electrode repositioning. CONCLUSIONS The diagnostic significance of DR as indirect evidence of electrodes being within thalamic nuclei is limited. If DR is not elicited, it should be regarded as a misplacement. Even if DR is elicited, it may not be interpreted as a sound indicator of proper electrode placement within the thalamus. A sophisticated, postoperative imaging study is warranted in every case of ANT DBS.
Collapse
Affiliation(s)
- Byung-Chul Son
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
26
|
Thalamic interictal epileptiform discharges in deep brain stimulated epilepsy patients. J Neurol 2016; 263:2120-6. [DOI: 10.1007/s00415-016-8246-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022]
|
27
|
Jiltsova E, Möttönen T, Fahlström M, Haapasalo J, Tähtinen T, Peltola J, Öhman J, Larsson EM, Kiekara T, Lehtimäki K. Imaging of Anterior Nucleus of Thalamus Using 1.5T MRI for Deep Brain Stimulation Targeting in Refractory Epilepsy. Neuromodulation 2016; 19:812-817. [PMID: 27398710 DOI: 10.1111/ner.12468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/03/2016] [Accepted: 05/11/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the anterior nucleus of thalamus (ANT) is an evolving treatment option in refractory focal epilepsy. Due to poor visualization of ANT in traditional MRI sequences used for movement disorder surgery, targeting of ANT is mainly based on stereotactic atlas information. Sophisticated 3T MRI methods enable visualization of ANT, but 1.5T MRI is still preferred or more readily available in a large number of centers performing DBS. OBJECTIVE In the present study, we sought to determine whether ANT could be adequately visualized at 1.5T MRI pre- and postoperatively using imaging techniques similar to the ones visualizing ANT in 3T MRI. A total of 15 MRI examinations with short tau inversion recovery (STIR) and T1-weighted magnetization prepared gradient echo (MPRAGE) images were performed to visualize ANT in nonepileptic subjects (n = 2), patients with vagus nerve stimulator (VNS) (n = 3), stereotactic MRI (n = 3), patients with ANT-DBS (n = 7). RESULTS ANT was distinctly visualized in STIR and T1-weighted MPRAGE images in patients without implanted stimulators, with Leksell stereotactic frame and with fully implanted VNS. Postoperative 1.5T MRI was able to demonstrate some of the anatomical landmarks around ANT enabling assessment of electrode contact locations. CONCLUSIONS The visualization of ANT is possible in preoperative 1.5T MRI enabling direct targeting of ANT all examined situations. The use of indirect targeting and its inherent potential for lead misplacement due to anatomical variation may be avoided using these MRI methods. Furthermore, postoperative MRI with STIR and T1-weighted MPRAGE images enable detailed postoperative assessment of contact locations.
Collapse
Affiliation(s)
- Elena Jiltsova
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Timo Möttönen
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Markus Fahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Joonas Haapasalo
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Timo Tähtinen
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Jukka Peltola
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Juha Öhman
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Tommi Kiekara
- Medical Imaging Centre, Tampere University Hospital, Tampere, Finland
| | - Kai Lehtimäki
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden.,Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
28
|
Möttönen T, Katisko J, Haapasalo J, Tähtinen T, Saastamoinen A, Peltola J, Öhman J, Lehtimäki K. The Correlation between Intraoperative Microelectrode Recording and 3-Tesla MRI in Patients Undergoing ANT-DBS for Refractory Epilepsy. Stereotact Funct Neurosurg 2016; 94:86-92. [PMID: 27093608 DOI: 10.1159/000444761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 02/17/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the anterior nucleus of the thalamus) (ANT) has been suggested as a treatment option in refractory epilepsy. The targeting of ANT is especially challenging due to its poor visualization in commonly used MRI sequences, lack of easily observable symptom relief during surgery and high degree of anatomical variation between individuals. OBJECTIVES To study whether intraoperative microelectrode recording (MER), a method widely used in movement disorder surgery, provides clinically relevant information during the ANT-DBS implantation procedure. METHODS A total of 186 MER samples from 5 patients and 10 thalami obtained from ANT-DBS surgery for refractory epilepsy were analyzed with respect to the signal characteristics and location in 3-tesla (3T) MRI STIR (short T1 inversion recovery) images. The location of each MER sample was calculated relative to visible borders of the ANT after correction of the sample locations according to the position of the final DBS electrode in postoperative CT-MRI fusion images. RESULTS We found that the lateral aspect of the ANT lacked spiking activity consistent with the presence of white matter. The spike frequency in samples correlating with location at the ANT showed significantly lower spike frequency compared to samples correlating with location at the ventral anterior nucleus (median 3.0 and 7.0 spikes/2 s; p < 0.05), but spike bursts were morphologically similar in appearance. Trajectories entering the dorsomedial nucleus according to 3T MRI STIR images showed a yet different firing pattern with more low-amplitude regular activity. CONCLUSIONS Our data suggest that MER provides clinically relevant information during implantation surgery by demonstrating both nucleus-specific neuronal firing patterns and white matter laminae between different nuclear groups.
Collapse
Affiliation(s)
- Timo Möttönen
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy. Brain Stimul 2015; 9:268-75. [PMID: 26680105 DOI: 10.1016/j.brs.2015.09.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/19/2015] [Accepted: 09/30/2015] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Deep brain stimulation of the anterior nucleus of the thalamus (ANT) is an emerging therapy for refractory focal epilepsy. However, the most optimal target for stimulation has not been unambiguously described. OBJECTIVE In the present study, we investigated the correlation between the stimulation site and outcome in order to define the optimal target for deep brain stimulation in refractory epilepsy. METHODS The locations of 62 contacts used in 30 treatment attempts in 15 prospectively followed patients during a 5 year period were assessed. Treatment attempts were classified into responding and non-responding trials using seizure reduction and side effect profile as criteria. The locations of active contacts were calculated with respect to mid-commissural point and visible borders of ANT in 3T MRI (ANT-normalized coordinate system) aiming to minimize the confounding effect of individual variation in the location and size of the ANT. RESULTS Contacts in successful treatment trials were located significantly more anterior and superior both in AC-PC and ANT-normalized coordinate systems. Favourable outcome was observed at 3T MRI based location of ANT but not at location predicted by Schaltenbrandt atlas sagittal data. Contacts used in successful trials were at anterior aspect of the ANT complex evidenced by the ANT-normalized coordinate system. CONCLUSION The anti-epileptic effect of anterior thalamic DBS may be dependent on stimulation site especially in the anterior to posterior axis. Extensive anatomical variation confounds severely the targeting of ANT. Therefore, direct visualization of the desired target for stimulation is essential for favourable outcome in refractory epilepsy.
Collapse
|
30
|
Kowski AB, Voges J, Heinze HJ, Oltmanns F, Holtkamp M, Schmitt FC. Nucleus accumbens stimulation in partial epilepsy--a randomized controlled case series. Epilepsia 2015; 56:e78-82. [PMID: 25940212 DOI: 10.1111/epi.12999] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
Neuromodulative treatment options are warranted in patients with difficult-to-treat epilepsy. However, acquisition of controlled data on deep brain stimulation has so far been achieved only for the centromedian and anterior thalamic nucleus. In a case series of four patients with intractable partial epilepsy, a randomized controlled cross-over protocol was used to get insight into efficacy and safety of 3-month nucleus accumbens stimulation. Seizure frequency, neurocognitive testing, "Liverpool Seizure Severity Score," "Quality of Life in Epilepsy Inventory," "Beck Depression Inventory," and "Mini International Neuropsychiatric Interview" were obtained at every visit. In a subsequent open-label phase, nucleus accumbens stimulation responders underwent concomitant anterior thalamic nucleus stimulation, whereas nonresponders received solely thalamic stimulation. Under nucleus accumbens stimulation, three of four patients had ≥ 50% reduction in frequency of disabling seizures without further improvement with additional anterior thalamic nucleus stimulation. Patient-reported outcome and neurocognitive testing remained unchanged. Accumbens stimulation is safe and seems to be a suitable option in intractable partial epilepsy. The current findings require substantiation by an adequately powered multicenter study.
Collapse
Affiliation(s)
- Alexander B Kowski
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, University of Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Hans-Jochen Heinze
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Department of Neurology, University of Magdeburg, Germany
| | - Frank Oltmanns
- Epilepsy-Center Berlin-Brandenburg, Evangelisches Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, Germany.,Epilepsy-Center Berlin-Brandenburg, Evangelisches Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | | |
Collapse
|
31
|
Möttönen T, Katisko J, Haapasalo J, Tähtinen T, Kiekara T, Kähärä V, Peltola J, Öhman J, Lehtimäki K. Defining the anterior nucleus of the thalamus (ANT) as a deep brain stimulation target in refractory epilepsy: Delineation using 3 T MRI and intraoperative microelectrode recording. NEUROIMAGE-CLINICAL 2015; 7:823-9. [PMID: 26082891 PMCID: PMC4459042 DOI: 10.1016/j.nicl.2015.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/03/2015] [Accepted: 03/01/2015] [Indexed: 11/27/2022]
Abstract
Background Deep brain stimulation (DBS) is a minimally invasive and reversible method to treat an increasing number of neurological and psychiatric disorders, including epilepsy. Targeting poorly defined deep structures is based in large degree on stereotactic atlas information, which may be a major source of inconsistent treatment effects. Aim of the study In the present study, we aimed to study whether a recently approved target for epilepsy (anterior nucleus of thalamus, ANT) is visualized in clinically established 3 T MRI and whether ANT is delineated using intraoperative microelectrode recording (MER). We have especially focused on individual variation in the location of ANT in stereotactic space. We also aimed to demonstrate the role of individual variation in interpretation of MER data by projecting samples onto AC–PC (anterior and posterior commissure) and ANT-normalized coordinate systems. Methods Detailed analysis of ANT delineations in 3 T MRI short tau inversion recovery (STIR) images from eight patients undergoing DBS for refractory epilepsy was performed. Coronal and sagittal cross-sectional models of ANT were plotted in the AC–PC coordinate system to study individual variation. A total of 186 MER samples collected from 10 DBS trajectories and 5 patients were analyzed, and the location of each sample was calculated and corrected accordingly to the location of the final DBS electrode and projected to the AC–PC or coordinate system normalized to ANT. Results Most of the key structures in the anatomic atlas around ANT (mammillothalamic tract and external medullary lamina) were identified in STIR images allowing visual delineation of ANT. We observed a high degree of anatomical variation in the location of ANT, and the cross-sectional areas overlapped by study patients decreased in a linear fashion with an increasing number of patients. MER information from 10 individual trajectories correlated with STIR signal characteristics by demonstrating a spike-negative zone, presumably white matter layer, at the lateral aspect of ANT in ANT-normalized coordinate system as predicted by STIR images. However, MER information projected to the AC–PC coordinate system was not able to delineate ANT. Conclusions ANT is delineated in 3 T MRI by visualization of a thin white matter lamina between ANT and other nuclear groups that lack spiking activity. Direct targeting in the anterior thalamic area is superior to indirect targeting due to extensive individual variation in the location of ANT. Without detailed imaging information, however, a single trajectory MER has little localizing value. ANT can be directly delineated in 3 T MRI by the surrounding white matter. Microelectrode recordings from ANT borders concur with imaging. High degree of anatomical variation calls for direct targeting.
Collapse
Key Words
- 3D-T1W, 3-dimensional (multi-planar reconstruction) T1-weighted image
- AC, anterior commissure
- ANT, anterior nucleus of thalamus
- Anterior nucleus
- DBS, deep brain stimulation
- Deep brain stimulation
- Epilepsy
- MCP, mid-commissural point
- MER, microelectrode recording
- Magnetic resonance imaging
- PC, posterior commissure
- STIR, short tau inversion recovery
- T2W, T2-weighted image
- Thalamus
- VA, ventral anterior nucleus of thalamus
Collapse
Affiliation(s)
- T Möttönen
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, Tampere 33521, Finland
| | - J Katisko
- Department of Neurosurgery, Oulu University Hospital, P.O. Box 21, Oulu 90029, Finland
| | - J Haapasalo
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, Tampere 33521, Finland
| | - T Tähtinen
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, Tampere 33521, Finland
| | - T Kiekara
- Medical Imaging Centre, Tampere University Hospital, P.O. Box 2000, Tampere 33521, Finland
| | - V Kähärä
- Medical Imaging Centre, Tampere University Hospital, P.O. Box 2000, Tampere 33521, Finland
| | - J Peltola
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, Tampere 33521, Finland
| | - J Öhman
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, Tampere 33521, Finland
| | - K Lehtimäki
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, Tampere 33521, Finland
| |
Collapse
|
32
|
Kanowski M, Voges J, Buentjen L, Stadler J, Heinze HJ, Tempelmann C. Direct visualization of anatomic subfields within the superior aspect of the human lateral thalamus by MRI at 7T. AJNR Am J Neuroradiol 2014; 35:1721-7. [PMID: 24852290 DOI: 10.3174/ajnr.a3951] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The morphology of the human thalamus shows high interindividual variability. Therefore, direct visualization of landmarks within the thalamus is essential for an improved definition of electrode positions for deep brain stimulation. The aim of this study was to provide anatomic detail in the thalamus by using inversion recovery TSE imaging at 7T. MATERIALS AND METHODS The MR imaging protocol was optimized on 1 healthy subject to segment thalamic nuclei from one another. Final images, acquired with 0.5(2)-mm2 in-plane resolution and 3-mm section thickness, were compared with stereotactic brain atlases to assign visualized details to known anatomy. The robustness of the visualization of thalamic nuclei was assessed with 4 healthy subjects at lower image resolution. RESULTS Thalamic subfields were successfully delineated in the dorsal aspect of the lateral thalamus. T1-weighting was essential. MR images had an appearance very similar to that of myelin-stained sections seen in brain atlases. Visualized intrathalamic structures were, among others, the lamella medialis, the external medullary lamina, the reticulatum thalami, the nucleus centre médian, the boundary between the nuclei dorso-oralis internus and externus, and the boundary between the nuclei dorso-oralis internus and zentrolateralis intermedius internus. CONCLUSIONS Inversion recovery-prepared TSE imaging at 7T has a high potential to reveal fine anatomic detail in the thalamus, which may be helpful in enhancing the planning of stereotactic neurosurgery in the future.
Collapse
Affiliation(s)
- M Kanowski
- From the Departments of Neurology (M.K., H.-J.H., C.T.)
| | - J Voges
- Stereotactic Neurosurgery (J.V., L.B.), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany Leibniz Institute for Neurobiology Magdeburg (J.V., J.S., H.-J.H.), Magdeburg, Germany
| | - L Buentjen
- Stereotactic Neurosurgery (J.V., L.B.), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - J Stadler
- Leibniz Institute for Neurobiology Magdeburg (J.V., J.S., H.-J.H.), Magdeburg, Germany
| | - H-J Heinze
- From the Departments of Neurology (M.K., H.-J.H., C.T.) Leibniz Institute for Neurobiology Magdeburg (J.V., J.S., H.-J.H.), Magdeburg, Germany German Center for Neurodegenerative Diseases (H.-J.H.), Magdeburg, Germany
| | - C Tempelmann
- From the Departments of Neurology (M.K., H.-J.H., C.T.)
| |
Collapse
|
33
|
Schmitt FC, Voges J, Heinze HJ, Zaehle T, Holtkamp M, Kowski AB. Safety and feasibility of nucleus accumbens stimulation in five patients with epilepsy. J Neurol 2014; 261:1477-84. [PMID: 24801491 PMCID: PMC4119256 DOI: 10.1007/s00415-014-7364-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 01/10/2023]
Abstract
In five adult patients with intractable partial epilepsy, safety and feasibility of chronic bilateral electrical stimulation of the nucleus accumbens (NAC) were assessed, also providing initial indications of therapeutic efficacy. Concurrent medication remained unchanged. In this phase 1 trial, clinical outcome parameters of interest were Quality of Life in Epilepsy questionnaire (QOLIE-31-P), Beck Depression Inventory, Mini International Neuropsychiatric Interview, neuropsychological testing, and Liverpool Seizure Severity Scale. Those data were obtained after 6 months of NAC stimulation and compared to the equivalent assessments made directly before implantation of electrodes. Additionally, monthly frequencies of simple partial seizures, complex partial seizures (CPS), and generalised tonic–clonic seizures (GTCS) were assessed during 3 months before electrode implantation and at the end of 6-month NAC stimulation. Proportion of responders, i.e. ≥50 % reduction in frequency of disabling seizures (sum of CPS and GTCS), was calculated. Main findings were unchanged psychiatric and neuropsychological assessment and a significant decrease in seizure severity (p = 0.043). QOLIE-31-P total score trended towards improvement (p = 0.068). Two out of five participants were responders. The median reduction in frequency of disabling seizures was 37.5 %. In summary, we provide initial evidence for safety and feasibility of chronic electrical stimulation of the NAC in patients with intractable partial epilepsy, as indicated by largely unchanged neurocognitive function and psychiatric comorbidity. Even though our data are underpowered to reliably assess efficacy, the significant decrease in seizure severity provides an initial indication of antiictal efficacy of NAC stimulation. This calls for larger and at best randomised trials to further elucidate efficacy of NAC stimulation in patients with pharmacologically intractable epilepsy.
Collapse
Affiliation(s)
- Friedhelm C Schmitt
- Department of Neurology, University of Magdeburg, Leipzigerstr. 44, 39120, Magdeburg, Germany,
| | | | | | | | | | | |
Collapse
|
34
|
Tiefe Hirnstimulation des Nucleus accumbens bei fokalen Epilepsien. ZEITSCHRIFT FUR EPILEPTOLOGIE 2014. [DOI: 10.1007/s10309-013-0344-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|