1
|
Kumagai A, Takeda S, Sohara E, Uchida S, Iijima H, Itakura A, Koya D, Kanasaki K. Dietary Magnesium Insufficiency Induces Salt-Sensitive Hypertension in Mice Associated With Reduced Kidney Catechol-O-Methyl Transferase Activity. Hypertension 2021; 78:138-150. [PMID: 33840199 DOI: 10.1161/hypertensionaha.120.16377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Asako Kumagai
- Faculty of Medicine, Internal Medicine I, Shimane University, Izumo, Japan (A.K., K.K.)
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan (A.K., S.T., A.I.)
- Department of Diabetology and Endocrinology (A.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan (A.K., S.T., A.I.)
| | - Eisei Sohara
- Department of Nephrology, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan (E.S., S.U.)
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan (E.S., S.U.)
| | - Hiroshi Iijima
- School of Pharmacy, Nihon University, Chiba, Japan (H.I.)
| | - Astuo Itakura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan (A.K., S.T., A.I.)
| | - Daisuke Koya
- Department of Diabetology and Endocrinology (A.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (D.K., K.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Keizo Kanasaki
- Faculty of Medicine, Internal Medicine I, Shimane University, Izumo, Japan (A.K., K.K.)
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (D.K., K.K.), Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
2
|
van der Wijst J, Tutakhel OAZ, Bos C, Danser AHJ, Hoorn EJ, Hoenderop JGJ, Bindels RJM. Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. Am J Physiol Renal Physiol 2018; 315:F110-F122. [PMID: 29357414 DOI: 10.1152/ajprenal.00379.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The distal convoluted tubule (DCT) of the kidney plays an important role in blood pressure regulation by modulating Na+ reabsorption via the Na+-Cl- cotransporter (NCC). A diet containing high salt (NaCl) and low K+ activates NCC, thereby causing Na+ retention and a rise in blood pressure. Since high blood pressure, hypertension, is associated with changes in serum calcium (Ca2+) and magnesium (Mg2+) levels, we hypothesized that dietary Na+ and K+ intake affects Ca2+ and Mg2+ transport in the DCT. Therefore, the present study aimed to investigate the effect of a high-Na+/low-K+ diet on renal Ca2+ and Mg2+ handling. Mice were divided in four groups and fed a normal-Na+/normal-K+, normal-Na+/low-K+, high-Na+/normal-K+, or high-Na+/low-K+ diet for 4 days. Serum and urine were collected for electrolyte and hormone analysis. Gene and protein expression of electrolyte transporters were assessed in kidney and intestine by qPCR and immunoblotting. Whereas Mg2+ homeostasis was not affected, the mice had elevated urinary Ca2+ and phosphate (Pi) excretion upon high Na+ intake, as well as significantly lower serum Ca2+ levels in the high-Na+/low-K+ group. Alterations in the gene and protein expression of players involved in Ca2+ and Pi transport indicate that reabsorption in the proximal tubular and TAL is affected, while inducing a compensatory response in the DCT. These effects may contribute to the negative health impact of a high-salt diet, including kidney stone formation, chronic kidney disease, and loss of bone mineral density.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Omar A Z Tutakhel
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Alexander H J Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam , The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|
3
|
Nguyen P, Reynolds B, Zentek J, Paßlack N, Leray V. Sodium in feline nutrition. J Anim Physiol Anim Nutr (Berl) 2016; 101:403-420. [PMID: 27550521 DOI: 10.1111/jpn.12548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/09/2016] [Indexed: 11/27/2022]
Abstract
High sodium levels in cat food have been controversial for a long time. Nonetheless, high sodium levels are used to enhance water intake and urine volume, with the main objective of reducing the risk of urolithiasis. This article is a review of current evidence of the putative risks and benefits of high dietary sodium levels. Its secondary aim is to report a possible safe upper limit (SUL) for sodium intake. The first part of the manuscript is dedicated to sodium physiology, with a focus on the mechanisms of sodium homeostasis. In this respect, there is only few information regarding possible interactions with other minerals. Next, the authors address how sodium intake affects sodium balance; knowledge of these effects is critical to establish recommendations for sodium feed content. The authors then review the consequences of changes in sodium intake on feline health, including urolithiasis, blood pressure changes, cardiovascular alterations and kidney disease. According to recent, long-term studies, there is no evidence of any deleterious effect of dietary sodium levels as high as 740 mg/MJ metabolizable energy, which can therefore be considered the SUL based on current knowledge.
Collapse
Affiliation(s)
- P Nguyen
- Nutrition and Endocrinology Unit, LUNAM Université, Oniris, National College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - B Reynolds
- Clinical Research Unit, University of Toulouse, INP, National Veterinary School of Toulouse, Toulouse, France
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - N Paßlack
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - V Leray
- Nutrition and Endocrinology Unit, LUNAM Université, Oniris, National College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| |
Collapse
|
4
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
5
|
Lee CT, Ng HY, Lee YT, Lai LW, Lien YHH. The role of calbindin-D28k on renal calcium and magnesium handling during treatment with loop and thiazide diuretics. Am J Physiol Renal Physiol 2015; 310:F230-6. [PMID: 26582761 DOI: 10.1152/ajprenal.00057.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022] Open
Abstract
Calbindin-D28k (CBD-28k) is a calcium binding protein located in the distal convoluted tubule (DCT) and plays an important role in active calcium transport in the kidney. Loop and thiazide diuretics affect renal Ca and Mg handling: both cause Mg wasting, but have opposite effects on Ca excretion as loop diuretics increase, but thiazides decrease, Ca excretion. To understand the role of CBD-28k in renal Ca and Mg handling in response to diuretics treatment, we investigated renal Ca and Mg excretion and gene expression of DCT Ca and Mg transport molecules in wild-type (WT) and CBD-28k knockout (KO) mice. Mice were treated with chlorothiazide (CTZ; 50 mg · kg(-1) · day(-1)) or furosemide (FSM; 30 mg · kg(-1) · day(-1)) for 3 days. To avoid volume depletion, salt was supplemented in the drinking water. Urine Ca excretion was reduced in WT, but not in KO mice, by CTZ. FSM induced similar hypercalciuria in both groups. DCT Ca transport molecules, including transient receptor potential vanilloid 5 (TRPV5), TRPV6, and CBD-9k, were upregulated by CTZ and FSM in WT, but not in KO mice. Urine Mg excretion was increased and transient receptor potential subfamily M, member 6 (TRPM6) was upregulated by both CTZ and FSM in WT and KO mice. In conclusion, CBD-28k plays an important role in gene expression of DCT Ca, but not Mg, transport molecules, which may be related to its being a Ca, but not a Mg, intracellular sensor. The lack of upregulation of DCT Ca transport molecules by thiazides in the KO mice indicates that the DCT Ca transport system is critical for Ca conservation by thiazides.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, and Chang-Gung University, College of Medicine, Taoyuan, Taiwan; Kidney Research Center, Chang Gung Memorial Hospital, Chang-Gung University, College of Medicine, Taoyuan, Taiwan
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, and Chang-Gung University, College of Medicine, Taoyuan, Taiwan
| | - Yueh-Ting Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, and Chang-Gung University, College of Medicine, Taoyuan, Taiwan
| | - Li-Wen Lai
- Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Yeong-Hau H Lien
- Arizona Kidney Disease and Heart Center, Tucson, Arizona; and Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
6
|
Pineda C, Aguilera-Tejero E, Raya AI, Montes de Oca A, Rodriguez M, Lopez I. Effects of two calculolytic diets on parameters of feline mineral metabolism. J Small Anim Pract 2015; 56:499-504. [PMID: 26011562 DOI: 10.1111/jsap.12368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/13/2015] [Accepted: 03/29/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To evaluate the influence of two feline calculolytic diets on selected parameters of mineral metabolism. MATERIALS AND METHODS Two dry commercial diets designed for struvite urolith dissolution were evaluated in 14 cats. The study was designed as a two-sequence, four-period crossover protocol with a baseline period, two 60-day "run-in" periods in which calculolytic diets (Diet 1 and Diet 2) were fed and one 30-day "wash-out" period. Data are expressed as median (range). RESULTS Feeding the calculolytic diets for two months did not alter plasma concentrations of calcium, phosphorus, magnesium and parathyroid hormone. A significant (P < 0.05 in each case) decline in calcitriol was observed after administering both diets from 236.4 (122.4-429.6) to 170.4 (108.0-394.3) pmol/L (Diet 1) and from 278.4 (153.6-492.0) to 177.1 (87.6-392.4) pmol/L (Diet 2). Cats fed Diet 1 showed a significant increase in urine calcium concentration (from 0.3 (0.2-0.5) to 0.4 (0.3-0.7) mmol/L). Magnesium concentration in urine was significantly increased with both diets, from 1.4 (0.1-1.7) to 1.5 (1.3-2.4) mmol/L (Diet 1) and from 1.1 (0.4-1.9) to 2.0 (0.1-3.1) mmol/L (Diet 2). CLINICAL SIGNIFICANCE Both diets resulted in an increased urinary concentration of magnesium, through different mechanisms: urine acidification (Diet 1) and increased sodium load (Diet 2).
Collapse
Affiliation(s)
- C Pineda
- Department of Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | - E Aguilera-Tejero
- Department of Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | - A I Raya
- Department of Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | - A Montes de Oca
- Department of Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | - M Rodriguez
- Instituto Maimonides para la Investigacion Biomedica (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Cordoba, Spain
| | - I Lopez
- Department of Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| |
Collapse
|
7
|
Pham PCT, Pham PAT, Pham SV, Pham PTT, Pham PMT, Pham PTT. Hypomagnesemia: a clinical perspective. Int J Nephrol Renovasc Dis 2014; 7:219-30. [PMID: 24966690 PMCID: PMC4062555 DOI: 10.2147/ijnrd.s42054] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although magnesium is involved in a wide spectrum of vital functions in normal human physiology, the significance of hypomagnesemia and necessity for its treatment are under-recognized and underappreciated in clinical practice. In the current review, we first present an overview of the clinical significance of hypomagnesemia and normal magnesium metabolism, with a focus on renal magnesium handling. Subsequently, we review the literature for both congenital and acquired hypomagnesemic conditions that affect the various steps in normal magnesium metabolism. Finally, we present an approach to the routine evaluation and suggested management of hypomagnesemia.
Collapse
Affiliation(s)
| | - Phuong-Anh T Pham
- Veterans Administration Central California Health Care System, Fresno, CA, USA
| | - Son V Pham
- South Texas Veterans Health Care System and University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | |
Collapse
|
8
|
Paßlack N, Burmeier H, Brenten T, Neumann K, Zentek J. Short term effects of increasing dietary salt concentrations on urine composition in healthy cats. Vet J 2014; 201:401-5. [PMID: 24881513 DOI: 10.1016/j.tvjl.2014.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 03/20/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
High dietary salt (NaCl) concentrations are assumed to be beneficial in preventing the formation of calcium oxalate (CaOx) uroliths in cats, since increased water intake and urine volume have been observed subsequent to intake. In human beings, dietary NaCl restriction is recommended for the prevention of CaOx urolith formation, since high NaCl intake is associated with increased urinary Ca excretion. The aim of the present study was to clarify the role of dietary NaCl in the formation of CaOx uroliths in cats. Eight cats received four diets that differed in Na and Cl concentrations (0.38-1.43% Na and 0.56-2.52% Cl dry matter, DM). Each feeding period consisted of a 21 day adaptation period, followed by a 7 day sampling period for urine collection. Higher dietary NaCl concentrations were associated with increased urine volume and renal Na excretion. Urinary Ca concentration was constant, but renal Ca excretion increased from 0.62 to 1.05 mg/kg bodyweight (BW)/day with higher dietary NaCl concentrations (P ≤ 0.05). Urinary oxalate (Ox), citrate, P and K concentrations decreased when NaCl intake was high (P ≤ 0.05), and urinary pH was low in all groups (6.33-6.45; P > 0.05). Relative supersaturation of CaOx in the urine was unaffected by dietary NaCl concentrations. In conclusion, the present study demonstrated several beneficial effects of high dietary NaCl intake over a relatively short time period. In particular, urinary Ca concentration remained unchanged because of increased urine volume. Decreased urinary Ox concentrations might help to prevent the formation of CaOx uroliths, but this should be verified in future studies in diseased or predisposed cats.
Collapse
Affiliation(s)
- N Paßlack
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany.
| | - H Burmeier
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - T Brenten
- Mars GmbH, Eitzer Straße 215, 27283 Verden, Germany
| | - K Neumann
- Institute of Biometry and Clinical Epidemiology, Charité, Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|