1
|
Diagnostic biomarkers of dilated cardiomyopathy. Immunobiology 2021; 226:152153. [PMID: 34784575 DOI: 10.1016/j.imbio.2021.152153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a condition involving dilation of cardiac chambers, which results in contraction impairment. Besides invasive and non-invasive diagnostic procedures, cardiac biomarkers are of great importance in both diagnosis and prognosis of the disease. These biomarkers are categorized into three groups based on their site; cardiomyocyte biomarkers, microenvironmental biomarkers and macroenvironmental biomarkers. AIMS In this review, an overview of characteristics, epidemiology, etiology and clinical manifestations of DCM is provided. In addition, the most important biomarkers, of all three categories, and their diagnostic and prognostic values are discussed. CONCLUSION Considering the association of DCM with conditions such as infections and autoimmunity, which are prevalent among the population, introducing efficient diagnostic tools is of high value for the early detection of DCM to prevent its severe complications. The three discussed classes of biomarkers are potential candidates for the detection of DCM. However, further studies are necessary in this regard.
Collapse
|
2
|
Echeverría P, Gómez-Mora E, Roura S, Bonjoch A, Puig J, Pérez-Alvarez N, Bayés-Genís A, Clotet B, Blanco J, Negredo E. Variable endothelial cell function restoration after initiation of two antiretroviral regimens in HIV-infected individuals. J Antimicrob Chemother 2018; 72:2049-2054. [PMID: 28369542 DOI: 10.1093/jac/dkx074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Background The effect of ART on endothelial cell function is incompletely characterized. Methods We performed a 24 week prospective, case-control and comparative pilot study of ART-naive HIV-infected patients who started a darunavir- or rilpivirine-based regimen, matched with non-HIV-infected volunteers, to compare changes at week 24 from baseline in levels of circulating endothelial cells (CECs), endothelial progenitor cells (EPCs) and circulating angiogenic cells, as well as changes in immune-activation markers. Results The study population comprised 24 HIV-infected patients and 24 non-infected volunteers. Both HIV groups completely suppressed viraemia. HIV-infected patients had higher levels of activation markers than the control group in CD8 T cells at baseline; these decreased after 24 weeks of treatment, but without reaching the levels of the control group. No statistical differences in immune activation were seen between the darunavir and rilpivirine groups. Levels of CECs were higher and levels of EPCs and circulating angiogenic cells were lower in HIV-infected patients than in the control group, although these parameters were similar between the darunavir group and the control group, but not the rilpivirine group, at week 24. An unfavourable association was observed between rilpivirine, age and increased number of CECs. Conclusions Restoration of circulating levels of EPCs and CECs in darunavir-treated patients was greater than in those treated with rilpivirine, suggesting ongoing endothelial repair mechanisms.
Collapse
Affiliation(s)
- P Echeverría
- Lluita contra la Sida Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Universitat Autònoma de Barcelona, Catalonia 08916, Spain
| | - E Gómez-Mora
- AIDS Research Institute-IRSICAIXA, Institut Germans Trias I Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Badalona 08916, Spain
| | | | - A Bonjoch
- Lluita contra la Sida Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Universitat Autònoma de Barcelona, Catalonia 08916, Spain
| | - J Puig
- Lluita contra la Sida Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Universitat Autònoma de Barcelona, Catalonia 08916, Spain
| | - N Pérez-Alvarez
- Lluita contra la Sida Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Universitat Autònoma de Barcelona, Catalonia 08916, Spain.,Statistics and Operations Research, Technical University of Catalunya, Barcelona 08020, Spain
| | - A Bayés-Genís
- Servei de Cardiologia, Hospital Universitari Germans Trias i Pujol, Badalona 08916, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona 08020, Spain
| | - B Clotet
- Universitat de Vic - Universidad Central de Catalunya UVIC-UCC, Vic 08500, Spain
| | - J Blanco
- AIDS Research Institute-IRSICAIXA, Institut Germans Trias I Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Badalona 08916, Spain.,Universitat de Vic - Universidad Central de Catalunya UVIC-UCC, Vic 08500, Spain
| | - E Negredo
- Lluita contra la Sida Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Universitat Autònoma de Barcelona, Catalonia 08916, Spain.,Universitat de Vic - Universidad Central de Catalunya UVIC-UCC, Vic 08500, Spain
| |
Collapse
|
3
|
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Health Research Institut, Badalona, Spain
- Center of Regenerative Medicine in Barcelona, Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Research Institut, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Health Research Institut, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Cardiology Service, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| |
Collapse
|
4
|
Dookhun MN, Sun Y, Zou H, Cao X, Lu X. Classification of New Biomarkers of Dilated Cardiomyopathy Based on Pathogenesis—An Update. Health (London) 2018. [DOI: 10.4236/health.2018.103024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Roura S, Gálvez-Montón C, Mirabel C, Vives J, Bayes-Genis A. Mesenchymal stem cells for cardiac repair: are the actors ready for the clinical scenario? Stem Cell Res Ther 2017; 8:238. [PMID: 29078809 PMCID: PMC5658929 DOI: 10.1186/s13287-017-0695-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For years, sufficient progress has been made in treating heart failure following myocardial infarction; however, the social and economic burdens and the costs to world health systems remain high. Moreover, treatment advances have not resolved the underlying problem of functional heart tissue loss. In this field of research, for years we have actively explored innovative biotherapies for cardiac repair. Here, we present a general, critical overview of our experience in using mesenchymal stem cells, derived from cardiac adipose tissue and umbilical cord blood, in a variety of cell therapy and tissue engineering approaches. We also include the latest advances and future challenges, including good manufacturing practice and regulatory issues. Finally, we evaluate whether recent approaches hold potential for reliable translation to clinical trials.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Badalona, Spain. .,Center of Regenerative Medicine in Barcelona, Barcelona, Spain. .,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain. .,ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain.
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Clémentine Mirabel
- Servei de Teràpia Cel∙lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain
| | - Joaquim Vives
- Servei de Teràpia Cel∙lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Badalona, Spain. .,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain. .,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Cardiology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain. .,Heart Institute, Hospital Universitari Germans Trias i Pujol University Hospital, Carretera de Canyet s/n, 08916, Badalona, Barcelona, Spain.
| |
Collapse
|
6
|
Roura S, Gálvez-Montón C, Bayes-Genis A. Fibrin, the preferred scaffold for cell transplantation after myocardial infarction? An old molecule with a new life. J Tissue Eng Regen Med 2016; 11:2304-2313. [PMID: 27061269 DOI: 10.1002/term.2129] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/13/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022]
Abstract
Fibrin is a topical haemostat, sealant and tissue glue, which consists of concentrated fibrinogen and thrombin. It has broad medical and research uses. Recently, several studies have shown that engineered patches comprising mixtures of biological or synthetic materials and progenitor cells showed therapeutic promise for regenerating damaged tissues. In that context, fibrin maintains cell adherence at the site of injury, where cells are required for tissue repair, and offers a nurturing environment that protects implanted cells without interfering with their expected benefit. Here we review the past, present and future uses of fibrin, with a focus on its use as a scaffold material for cardiac repair. Fibrin patches filled with regenerative cells can be placed over the scarring myocardium; this methodology avoids many of the drawbacks of conventional cell-infusion systems. Advantages of using fibrin also include extraction from the patient's blood, an easy readjustment and implantation procedure, increase in viability and early proliferation of delivered cells, and benefits even with the patch alone. In line with this, we discuss the numerous preclinical studies that have used fibrin-cell patches, the practical issues inherent in their generation, and the necessary process of scaling-up from animal models to patients. In the light of the data presented, fibrin stands out as a valuable biomaterial for delivering cells to damaged tissue and for promoting beneficial effects. However, before the fibrin scaffold can be translated from bench to bedside, many issues must be explored further, including suboptimal survival and limited migration of the implanted cells to underlying ischaemic myocardium. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Santiago Roura
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain.,Center of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
7
|
Roura S, Gálvez-Montón C, Fernández MA, Lupón J, Bayes-Genis A. Circulating Endothelial Progenitor Cells: Potential Biomarkers for Idiopathic Dilated Cardiomyopathy. J Cardiovasc Transl Res 2016; 9:80-4. [PMID: 26739321 DOI: 10.1007/s12265-015-9671-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/27/2015] [Indexed: 12/22/2022]
Abstract
Dilated cardiomyopathy (DCM) remains the most frequent cause of cardiac transplant and thus results in an enormous cost burden for health care systems worldwide. Although DCM is thought to be induced mainly by genetic and/or environmental factors, the cause is unknown in the majority of cases, giving rise to the term idiopathic DCM. Marked cardiac endothelial changes are associated with disease progression and outcome, and there are ongoing efforts to identify biomarkers that have diagnostic and prognostic value. Here, we discuss the potential and the limitations of circulating endothelial progenitor cells (EPCs) as minimally invasive serological biomarkers for DCM. In this context, it is essential to further evaluate their clinical utility independently of other variable factors that can also affect EPC levels such as age, gender, lifestyles, and treatments. To that end, large multicenter studies and standardized instrument settings, reagents, and sample preparation protocols are needed to confirm this.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Ctra. de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain.
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Ctra. de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain
| | - Marco A Fernández
- Flow Cytometry Facility, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Josep Lupón
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Ctra. de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Postinfarction Functional Recovery Driven by a Three-Dimensional Engineered Fibrin Patch Composed of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Stem Cells Transl Med 2015; 4:956-66. [PMID: 26106218 DOI: 10.5966/sctm.2014-0259] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/17/2015] [Indexed: 01/16/2023] Open
Abstract
Considerable research has been dedicated to restoring myocardial cell slippage and limiting ventricular remodeling after myocardial infarction (MI). We examined the ability of a three-dimensional (3D) engineered fibrin patch filled with human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to induce recovery of cardiac function after MI. The UCBMSCs were modified to coexpress luciferase and fluorescent protein reporters, mixed with fibrin, and applied as an adhesive, viable construct (fibrin-cell patch) over the infarcted myocardium in mice (MI-UCBMSC group). The patch adhered well to the heart. Noninvasive bioluminescence imaging demonstrated early proliferation and differentiation of UCBMSCs within the construct in the postinfarct mice in the MI-UCBMSC group. The implanted cells also participated in the formation of new, functional microvasculature that connected the fibrin-cell patch to both the subjacent myocardial tissue and the host circulatory system. As revealed by echocardiography, the left ventricular ejection fraction and fractional shortening at sacrifice were improved in MI-UCBMSC mice and were markedly reduced in mice treated with fibrin alone and untreated postinfarction controls. In conclusion, a 3D engineered fibrin patch composed of UCBMSCs attenuated infarct-derived cardiac dysfunction when transplanted locally over a myocardial wound.
Collapse
|
9
|
Laurenzana A, Fibbi G, Chillà A, Margheri G, Del Rosso T, Rovida E, Del Rosso M, Margheri F. Lipid rafts: integrated platforms for vascular organization offering therapeutic opportunities. Cell Mol Life Sci 2015; 72:1537-57. [PMID: 25552244 PMCID: PMC11113367 DOI: 10.1007/s00018-014-1814-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/12/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Research on the nanoscale membrane structures known as lipid rafts is relevant to the fields of cancer biology, inflammation and ischaemia. Lipid rafts recruit molecules critical to signalling and regulation of the invasion process in malignant cells, the leukocytes that provide immunity in inflammation and the endothelial cells that build blood and lymphatic vessels, as well as the patterning of neural networks. As angiogenesis is a common denominator, regulation of receptors and signalling molecules critical to angiogenesis is central to the design of new approaches aimed at reducing, promoting or normalizing the angiogenic process. The goal of this review is to highlight some of the key issues that indicate the involvement of endothelial cell lipid rafts at each step of so-called 'sprouting angiogenesis', from stimulation of the vascular endothelial growth factor to the choice of tip cells, activation of migratory and invasion pathways, recruitment of molecules that guide axons in vascular patterning and maturation of blood vessels. Finally, the review addresses opportunities for future studies to define how these lipid domains (and their constituents) may be manipulated to stimulate the so-called 'normalization' of vascular networks within tumors, and be identified as the main target, enabling the development of more efficient chemotherapeutics and cancer immunotherapies.
Collapse
Affiliation(s)
- Anna Laurenzana
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Gabriella Fibbi
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Anastasia Chillà
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Giancarlo Margheri
- Institute of Complex Systems (ISC), Consiglio Nazionale delle Ricerche (CNR), Florence, Italy
| | - Tommaso Del Rosso
- Department of Physics, Pontificia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisabetta Rovida
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Mario Del Rosso
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
- Istituto Toscano Tumori, Florence, Italy
| | - Francesca Margheri
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
10
|
Umbilical cord blood-derived mesenchymal stem cells: new therapeutic weapons for idiopathic dilated cardiomyopathy? Int J Cardiol 2014; 177:809-18. [PMID: 25305679 DOI: 10.1016/j.ijcard.2014.09.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/08/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
Abstract
Dilated cardiomyopathy is the most frequent etiology of non-ischemic heart failure. In a majority of cases the causal mechanism is unknown, giving rise to the term 'idiopathic' dilated cardiomyopathy (IDCM). Major pathological derangements include patchy interstitial fibrosis, degenerated cardiomyocytes, and dilatation of the cardiac chambers, but recent evidence suggests that disease progression may also have the signature of cardiac endothelial dysfunction. As we better understand the molecular basis of IDCM, novel therapeutic approaches, mainly gene transfer and cell-based therapies, are being explored. Cells with regenerative potential have been extensively tested in cardiac diseases of ischemic origin in both pre-clinical and clinical settings. However, whether cell therapy has any clinical value in IDCM patients is still being evaluated. This article is a concise summary of cell therapy studies for IDCM, with a focus on recent advances that highlight the vascular potential exhibited by umbilical cord blood-derived mesenchymal stem cells (UCBMSCs). We also provide an overview of cardiac vasculature as a key regulator of subjacent myocardial integrity and function, and discuss the potential mechanisms of UCBMSC amelioration of IDCM myocardium. Consideration of these issues shows that these cells are conceivably new therapeutic agents for this complex and elusive human disorder.
Collapse
|
11
|
Roura S, Gálvez-Montón C, Pujal JM, Casani L, Fernández MA, Astier L, Gastelurrutia P, Domingo M, Prat-Vidal C, Soler-Botija C, Llucià-Valldeperas A, Llorente-Cortés V, Bayes-Genis A. New insights into lipid raft function regulating myocardial vascularization competency in human idiopathic dilated cardiomyopathy. Atherosclerosis 2013; 230:354-64. [DOI: 10.1016/j.atherosclerosis.2013.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 07/26/2013] [Accepted: 08/06/2013] [Indexed: 12/15/2022]
|
12
|
|