1
|
Pereira MF, Finazzi V, Rizzuti L, Aprile D, Aiello V, Mollica L, Riva M, Soriani C, Dossena F, Shyti R, Castaldi D, Tenderini E, Carminho-Rodrigues MT, Bally JF, de Vries BBA, Gabriele M, Vitriolo A, Testa G. YY1 mutations disrupt corticogenesis through a cell-type specific rewiring of cell-autonomous and non-cell-autonomous transcriptional programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580337. [PMID: 38405909 PMCID: PMC10888784 DOI: 10.1101/2024.02.16.580337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Germline mutations of YY1 cause Gabriele-de Vries syndrome (GADEVS), a neurodevelopmental disorder featuring intellectual disability and a wide range of systemic manifestations. To dissect the cellular and molecular mechanisms underlying GADEVS, we combined large-scale imaging, single-cell multiomics and gene regulatory network reconstruction in 2D and 3D patient-derived physiopathologically relevant cell lineages. YY1 haploinsufficiency causes a pervasive alteration of cell type specific transcriptional networks, disrupting corticogenesis at the level of neural progenitors and terminally differentiated neurons, including cytoarchitectural defects reminiscent of GADEVS clinical features. Transcriptional alterations in neurons propagated to neighboring astrocytes through a major non-cell autonomous pro-inflammatory effect that grounds the rationale for modulatory interventions. Together, neurodevelopmental trajectories, synaptic formation and neuronal-astrocyte cross talk emerged as salient domains of YY1 dosage-dependent vulnerability. Mechanistically, cell-type resolved reconstruction of gene regulatory networks uncovered the regulatory interplay between YY1, NEUROG2 and ETV5 and its aberrant rewiring in GADEVS. Our findings underscore the reach of advanced in vitro models in capturing developmental antecedents of clinical features and exposing their underlying mechanisms to guide the search for targeted interventions.
Collapse
Affiliation(s)
- Marlene F Pereira
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Veronica Finazzi
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Ludovico Rizzuti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Davide Aprile
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Vittorio Aiello
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Luca Mollica
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Matteo Riva
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Chiara Soriani
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | | | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Davide Castaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Erika Tenderini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Julien F Bally
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | | | - Michele Gabriele
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Alessandro Vitriolo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| |
Collapse
|
2
|
Fabiani M, Libotte F, Margiotti K, Tannous DKI, Sparacino D, D’Aleo MP, Monaco F, Dello Russo C, Mesoraca A, Giorlandino C. Agnathia-Otocephaly Complex Due to a De Novo Deletion in the OTX2 Gene. Genes (Basel) 2022; 13:genes13122269. [PMID: 36553536 PMCID: PMC9778614 DOI: 10.3390/genes13122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Agnathia-otocephaly complex (AOC) is a rare and usually lethal malformation typically characterized by hypoplasia or the absence of the mandible, ventromedial and caudal displacement of the ears with or without the fusion of the ears, a small oral aperture with or without a tongue hypoplasia. Its incidence is reported as 1 in 70,000 births and its etiology has been attributed to both genetic and teratogenic causes. AOC is characterized by a wide severity clinical spectrum even when occurring within the same family, ranging from a mild mandibular defect to an extreme facial aberration incompatible with life. Most AOC cases are due to a de novo sporadic mutation. Given the genetic heterogeneity, many genes have been reported to be implicated in this disease but to date, the link to only two genes has been confirmed in the development of this complex: the orthodenticle homeobox 2 (OTX2) gene and the paired related homeobox 1 (PRRX1) gene. In this article, we report a case of a fetus with severe AOC, diagnosed in routine ultrasound scan in the first trimester of pregnancy. The genetic analysis showed a novel 10 bp deletion mutation c.766_775delTTGGGTTTTA in the OTX2 gene, which has never been reported before, together with a missense variant c.778T>C in cis conformation.
Collapse
Affiliation(s)
- Marco Fabiani
- ALTAMEDICA, Human Genetics Laboratory, Viale Liegi 45, 00198 Rome, Italy
| | - Francesco Libotte
- ALTAMEDICA, Human Genetics Laboratory, Viale Liegi 45, 00198 Rome, Italy
| | - Katia Margiotti
- ALTAMEDICA, Human Genetics Laboratory, Viale Liegi 45, 00198 Rome, Italy
- Correspondence: ; Tel.: +39-06-85058961
| | - Dina Khader Issa Tannous
- School of Medicine and Surgery, Department of Obstetrics and Gynecology, UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Davide Sparacino
- ALTAMEDICA, Human Genetics Laboratory, Viale Liegi 45, 00198 Rome, Italy
| | - Maria Pia D’Aleo
- ALTAMEDICA, Human Genetics Laboratory, Viale Liegi 45, 00198 Rome, Italy
| | - Francesca Monaco
- ALTAMEDICA, Human Genetics Laboratory, Viale Liegi 45, 00198 Rome, Italy
| | | | - Alvaro Mesoraca
- ALTAMEDICA, Human Genetics Laboratory, Viale Liegi 45, 00198 Rome, Italy
| | - Claudio Giorlandino
- ALTAMEDICA, Human Genetics Laboratory, Viale Liegi 45, 00198 Rome, Italy
- ALTAMEDICA, Department of Prenatal Diagnosis, Fetal-Maternal Medical Centre, Altamedica Viale Liegi 45, 00198 Rome, Italy
| |
Collapse
|
3
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
4
|
Agnathia-otocephaly complex: a case report and a literature review on recurrence risk. CASE REPORTS IN PERINATAL MEDICINE 2020. [DOI: 10.1515/crpm-2020-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Agnathia-otocephaly complex (AOC) is an extremely rare, lethal disorder causing obstruction of the upper airway at birth due to absence of the mandible and hypoplasia of the oral cavity. Implications for future pregnancies need to be elucidated by parental counselling, as recurrence of AOC or associated comorbidities are possible. Very little is known on this subject, because of the rarity of the disorder and scarce data on genetic causes of this complex. The objectives of this study were to determine the recurrence risk and mode of inheritance for AOC based on current literature.
Contents
Recurrence of AOC or associated comorbidities within the family of an index case was reported in eight articles, describing 7 and 27 relatives, respectively. There were eight AOC cases in which the genetic cause was known. Mutations in 2 genes, orthodenticle homeobox 2 (OTX2) and paired related homeobox 1 (PRRX1), have been described. Due to its mainly sporadic appearance, recurrence risk is low. Counselling on recurrence risk is difficult, because of a broad heterogeneity with complex inheritance patterns and variability in phenotypic expression.
Outlook
Chromosomal analysis and exome sequencing in children with AOC will help unravel current aetiological uncertainties and could help in further reproductive decisions. We emphasize the need for timely diagnosis through ultrasound, providing parents with the opportunity to receive multidisciplinary counselling, giving them the chance to contemplate their management decisions.
Collapse
|
5
|
Dubucs C, Chassaing N, Sergi C, Aubert-Mucca M, Attié-Bitach T, Lacombe D, Thauvin-Robinet C, Arpin S, Perez MJ, Cabrol C, Chen CP, Aziza J, Colin E, Martinovic J, Calvas P, Plaisancié J. Re-focusing on Agnathia-Otocephaly complex. Clin Oral Investig 2020; 25:1353-1362. [PMID: 32643087 DOI: 10.1007/s00784-020-03443-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 07/03/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Agnathia-otocephaly complex is a rare condition characterized by mandibular hypoplasia or agnathia, ear anomalies (melotia/synotia) and microstomia with aglossia. This severe anomaly of the first branchial arch is most often lethal. The estimated incidence is less than 1 in 70.000 births, with etiologies linked to both genetic and teratogenic factors. Most of the cases are sporadic. To date, two genes have been described in humans to be involved in this condition: OTX2 and PRRX1. Nevertheless, the overall proportion of mutated cases is unknown and a significant number of patients remain without molecular diagnosis. Thus, the involvement of other genes than OTX2 and PRRX1 in the agnathia-otocephaly complex is not unlikely. Heterozygous mutations in Cnbp in mice are responsible for mandibular and eye defects mimicking the agnathia-otocephaly complex in humans and appear as a good candidate. Therefore, in this study, we aimed (i) to collect patients presenting with agnathia-otocephaly complex for screening CNBP, in parallel with OTX2 and PRRX1, to check its possible implication in the human phenotype and (ii) to compare our results with the literature data to estimate the proportion of mutated cases after genetic testing. MATERIALS AND METHODS In this work, we describe 10 patients suffering from the agnathia-otocephaly complex. All of them benefited from array-CGH and Sanger sequencing of OTX2, PRRX1 and CNBP. A complete review of the literature was made using the Pubmed database to collect all the patients described with a phenotype of agnathia-otocephaly complex during the 20 last years (1998-2019) in order (i) to study etiology (genetic causes, iatrogenic causes…) and (ii), when genetic testing was performed, to study which genes were tested and by which type of technologies. RESULTS In our 10 patients' cohort, no point mutation in the three tested genes was detected by Sanger sequencing, while array-CGH has allowed identifying a 107-kb deletion encompassing OTX2 responsible for the agnathia-otocephaly complex phenotype in 1 of them. In 4 of the 70 cases described in the literature, a toxic cause was identified and 22 out the 66 remaining cases benefited from genetic testing. Among those 22 patients, 6 were carrying mutation or deletion in the OTX2 gene and 4 in the PRRX1 gene. Thus, when compiling results from our cohort and the literature, a total of 32 patients benefited from genetic testing, with only 34% (11/32) of patients having a mutation in one of the two known genes, OTX2 or PRRX1. CONCLUSIONS From our work and the literature review, only mutations in OTX2 and PRRX1 have been found to date in patients, explaining around one third of the etiologies after genetic testing. Thus, agnathia-otocephaly complex remains unexplained in the majority of the patients, which indicates that other factors might be involved. Although involved in first branchial arch defects, no mutation in the CNBP gene was found in this study. This suggests that mutations in CNBP might not be involved in such phenotype in humans or that, unlike in mice, a compensatory effect might exist in humans. Nevertheless, given that agnathia-otocephaly complex is a rare phenotype, more patients have to be screened for CNBP mutations before we definitively conclude about its potential implication. Therefore, this work presents the current state of knowledge on agnathia-otocephaly complex and underlines the need to expand further the understanding of the genetic bases of this disorder, which remains largely unknown. CLINICAL RELEVANCE We made here an update and focus on the clinical and genetic aspects of agnathia-otocephaly complex as well as a more general review of craniofacial development.
Collapse
Affiliation(s)
- C Dubucs
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France.,Département d'Anatomie et de Cytologie Pathologiques, Institut Universitaire du cancer de Toulouse, Toulouse, France
| | - N Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France.,INSERM U1056, Université Toulouse III, Toulouse, France
| | - C Sergi
- Department of Lab. Med. & Pathology (5B4.09), University of Alberta, Edmonton, AB, Canada
| | - M Aubert-Mucca
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - T Attié-Bitach
- Unité d'Embryofœtopathologie, Service d'Histologie Embryologie Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Paris, France.,Institut Imagine, INSERM U1163, Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - D Lacombe
- Service de Génétique Médicale, CRMR, CHU de Bordeaux, Bordeaux, France.,INSERM U1211, Université de Bordeaux, 33076, Bordeaux, France
| | - C Thauvin-Robinet
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon, Dijon, Bourgogne, France.,Centre de Référence maladies rares "Anomalies du Développement et syndromes malformatifs," Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - S Arpin
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - M J Perez
- Department of Medical Genetics, Reference Center for Developmental Abnormalities and Constitutional Bone Diseases, CHRU, Montpellier, France
| | - C Cabrol
- Centre de Génétique Humaine, Centre Hospitalier Universitaire, Université de Franche-Comté, Besançon, France
| | - C P Chen
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - J Aziza
- Département d'Anatomie et de Cytologie Pathologiques, Institut Universitaire du cancer de Toulouse, Toulouse, France
| | - E Colin
- Department de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.,UMR CNRS 6214-INSERM 1083 and PREMMI, Université d'Angers, Angers, France
| | - J Martinovic
- Unit of Fetal Pathology, AP-HP Antoine Béclère Hospital, Clamart, France
| | - P Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France.,INSERM U1056, Université Toulouse III, Toulouse, France
| | - Julie Plaisancié
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France. .,INSERM U1056, Université Toulouse III, Toulouse, France.
| |
Collapse
|
6
|
Eintracht J, Corton M, FitzPatrick D, Moosajee M. CUGC for syndromic microphthalmia including next-generation sequencing-based approaches. Eur J Hum Genet 2020; 28:679-690. [PMID: 31896778 PMCID: PMC7171178 DOI: 10.1038/s41431-019-0565-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 01/29/2023] Open
Affiliation(s)
| | - Marta Corton
- Department of Genetics, IIS-University Hospital Fundación Jiménez Díaz-CIBERER, Madrid, Spain
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Paris JM, Letko A, Häfliger IM, Švara T, Gombač M, Klinc P, Škibin A, Pogorevc E, Drögemüller C. A de novo variant in OTX2 in a lamb with otocephaly. Acta Vet Scand 2020; 62:5. [PMID: 31969185 PMCID: PMC6977343 DOI: 10.1186/s13028-020-0503-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/03/2022] Open
Abstract
Background Otocephaly is a rare lethal malformation of the first branchial arch. While the knowledge on the causes of otocephaly in animals is limited, different syndromic forms in man are associated with variants of the PRRX1 and OTX2 genes. Case presentation A stillborn male lamb of the Istrian Pramenka sheep breed showed several congenital craniofacial anomalies including microstomia, agnathia, aglossia, and synotia. In addition, the lamb had a cleft palate, a small opening in the ventral neck region, a cystic oesophagus and two hepatic cysts. The brain was normally developed despite the deformed shape of the head. Taken together the findings led to a diagnosis of otocephaly. Whole-genome sequencing was performed from DNA of the affected lamb and both parents revealing a heterozygous single nucleotide variant in the OTX2 gene (Chr7: 71478714G > A). The variant was absent in both parents and therefore due to a de novo mutation event. It was a nonsense variant, XM_015097088.2:c.265C > T; which leads to an early premature stop codon and is predicted to truncate more than 70% of the OTX2 open reading frame (p.Arg89*). Conclusions The genetic findings were consistent with the diagnosis of the otocephaly and provide strong evidence that the identified loss-of-function variant is pathogenic due to OTX2 haploinsufficiency. The benefits of trio-based whole-genome sequencing as an emerging tool in veterinary pathology to confirm diagnosis are highlighted.
Collapse
|
8
|
Bijok J, Kucińska-Chahwan A, Gielniewska-Michalczyk L, Massalska D, Jakiel G, Roszkowski T. The location of the fetal ears: A hint for prenatal diagnosis of agnathia-otocephaly complex. JOURNAL OF CLINICAL ULTRASOUND : JCU 2019; 47:369-371. [PMID: 30756395 DOI: 10.1002/jcu.22703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Otocephaly is an extremely rare lethal congenital anomaly characterized by the absence or underdevelopment of the mandible. The clinical presentation is variable. Some cases may present with severe micrognathia as the only anomaly seen prenatally. The key to early diagnosis is careful assessment of the location of the fetal ears on 2D ultrasound examination.
Collapse
Affiliation(s)
- Julia Bijok
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Kucińska-Chahwan
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | | | - Diana Massalska
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Tomasz Roszkowski
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
9
|
Lacambra MD, Weinreb I, Demicco EG, Chow C, Sung YS, Swanson D, To KF, Wong KC, Antonescu CR, Dickson BC. PRRX-NCOA1/2 rearrangement characterizes a distinctive fibroblastic neoplasm. Genes Chromosomes Cancer 2019; 58:705-712. [PMID: 31008539 DOI: 10.1002/gcc.22762] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022] Open
Abstract
Fibroblastic/myofibroblastic neoplasms represent a broad, and occasionally diagnostically challenging, category of soft tissue neoplasms. A subset of these tumors defy conventional classification. However, with the advent of next-generation sequencing, the identification of disease-defining molecular alterations is gradually improving their subclassification. Following identification of two index cases of a distinctive fibroblastic neoplasm with a fusion gene involving PRRX1 and NCOA1, we performed a retrospective review to further characterize this entity. We identified two additional cases, including one with a fusion between PRRX1 and NCOA2. The average patient age was 38 years, and three patients were female. Two tumors occurred on the neck, and the others involved the groin and thigh. Tumors were centered in the subcutis and ranged from 2.3 to 14.0 cm (average 5.8 cm). Morphologically, they were predominantly hypocellular, with focal hypercellularity. They were composed of monomorphic spindle-stellate cells with a vague fascicular pattern. The nuclei were bland with only rare mitotic activity, and occasional multinucleation. The intervening stroma was typically abundant and ranged from myxoid to collagenous, with frequent rope-like collagen bundles. Three of the cases had a prominent vasculature ranging from numerous small curvilinear vessels to ectatic and branching staghorn-like vessels. Immunohistochemistry was negative for desmin, smooth muscle actin, S100, CD34, keratin, and epithelial membrane antigen. Each of the patients was treated by simple excision and none of the tumors were associated with local recurrence or metastasis. Based on their unique morphological and molecular attributes, we believe this represents a novel fibroblastic tumor for which we have tentatively proposed the name "PRRX-NCOAx-rearranged fibroblastic tumor."
Collapse
Affiliation(s)
- Maribel D Lacambra
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ilan Weinreb
- Department of Pathology, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth G Demicco
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Health System, Toronto, Ontario, Canada
| | - Chit Chow
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yun-Shao Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David Swanson
- Department of Pathology, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kwok-Chuen Wong
- Musculokeletal Oncology, Prince of Wales Hospital, Hong Kong, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brendan C Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 2019; 138:799-830. [PMID: 30762128 DOI: 10.1007/s00439-019-01977-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
Collapse
|
11
|
Meier N, Bruder E, Lapaire O, Hoesli I, Kang A, Hench J, Hoeller S, De Geyter J, Miny P, Heinimann K, Chaoui R, Tercanli S, Filges I. Exome sequencing of fetal anomaly syndromes: novel phenotype-genotype discoveries. Eur J Hum Genet 2019; 27:730-737. [PMID: 30679815 PMCID: PMC6461982 DOI: 10.1038/s41431-018-0324-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/02/2018] [Accepted: 12/04/2018] [Indexed: 01/05/2023] Open
Abstract
The monogenic etiology of most severe fetal anomaly syndromes is poorly understood. Our objective was to use exome sequencing (ES) to increase our knowledge on causal variants and novel candidate genes associated with specific fetal phenotypes. We employed ES in a cohort of 19 families with one or more fetuses presenting with a distinctive anomaly pattern and/or phenotype recurrence at increased risk for lethal outcomes. Candidate variants were identified in 12 families (63%); in 6 of them a definite diagnosis was achieved including known or novel variants in recognized disease genes (MKS1, OTX2, FGFR2, and RYR1) and variants in novel disease genes describing new fetal phenotypes (CENPF, KIF14). We identified variants likely causal after clinical and functional review (SMAD3, KIF4A, and PIGW) and propose novel candidate genes (PTK7, DNHD1, and TTC28) for early human developmental disease supported by functional and cross-species phenotyping evidence. We describe rare and novel fetal anomaly syndromes and highlight the diagnostic utility of ES, but also its contribution to discovery. The diagnostic yield of the future application of prenatal ES will depend on our ability to increase our knowledge on the specific phenotype–genotype correlations during fetal development.
Collapse
Affiliation(s)
- Nicole Meier
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Elisabeth Bruder
- University of Basel, Basel, Switzerland.,Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Olav Lapaire
- Department of Obstetrics and Gynecology, University Hospital Basel, Basel, Switzerland
| | - Irene Hoesli
- Department of Obstetrics and Gynecology, University Hospital Basel, Basel, Switzerland
| | - Anjeung Kang
- Centre for Prenatal Ultrasound, Freie Strasse, Basel, Switzerland
| | - Jürgen Hench
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Sylvia Hoeller
- University of Basel, Basel, Switzerland.,Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Julie De Geyter
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Peter Miny
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Karl Heinimann
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Rabih Chaoui
- Centre for Prenatal Diagnosis, Friedrichstrasse, Berlin, Germany
| | - Sevgi Tercanli
- University of Basel, Basel, Switzerland.,Centre for Prenatal Ultrasound, Freie Strasse, Basel, Switzerland
| | - Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland. .,Department of Clinical Research, University Hospital Basel, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia-microphthalmia. Hum Genet 2018; 138:831-846. [PMID: 30374660 DOI: 10.1007/s00439-018-1949-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
As new genes for A/M are identified in the genomic era, the number of syndromes associated with A/M has greatly expanded. In this review, we provide a brief synopsis of the clinical presentation and molecular genetic etiology of previously characterized pathways involved in A/M, including the Sex-determining region Y-box 2 (SOX2), Orthodenticle Homeobox 2 (OTX2) and Paired box protein-6 (PAX6) genes, and the Stimulated by retinoic acid gene 6 homolog (STRA6), Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3), and RA Receptor Beta (RARβ) genes that are involved in retinoic acid synthesis. Less common genetic causes of A/M, including genes involved in BMP signaling [Bone Morphogenetic Protein 4 (BMP4), Bone Morphogenetic Protein 7 (BMP7) and SPARC-related modular calcium-binding protein 1 (SMOC1)], genes involved in the mitochondrial respiratory chain complex [Holocytochrome c-type synthase (HCCS), Cytochrome C Oxidase Subunit 7B (COX7B), and NADH:Ubiquinone Oxidoreductase subunit B11 (NDUFB11)], the BCL-6 corepressor gene (BCOR), Yes-Associated Protein 1 (YAP1) and Transcription Factor AP-2 Alpha (TFAP2α), are more briefly discussed. We also review several recently described genes and pathways associated with A/M, including Smoothened (SMO) that is involved in Sonic hedgehog (SHH) signaling, Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) and Solute carrier family 25 member 24 (SLC25A24), emphasizing phenotype-genotype correlations and shared pathways where relevant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco Room RH384C, 1550 4th St, San Francisco, CA, 94143-2711, USA.
| |
Collapse
|
13
|
A novel mutation of orthodenticle homeobox 2 contributing to a case of otocephaly initially diagnosed by prenatal ultrasound in the first trimester. Clin Dysmorphol 2018; 26:98-100. [PMID: 27442045 DOI: 10.1097/mcd.0000000000000145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Di Iorgi N, Morana G, Allegri AEM, Napoli F, Gastaldi R, Calcagno A, Patti G, Loche S, Maghnie M. Classical and non-classical causes of GH deficiency in the paediatric age. Best Pract Res Clin Endocrinol Metab 2016; 30:705-736. [PMID: 27974186 DOI: 10.1016/j.beem.2016.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Growth hormone deficiency (GHD) may result from a failure of hypothalamic GHRH production or release, from congenital disorders of pituitary development, or from central nervous system insults including tumors, surgery, trauma, radiation or infiltration from inflammatory diseases. Idiopathic, isolated GHD is the most common sporadic form of hypopituitarism. GHD may also occur in combination with other pituitary hormone deficiencies, and is often referred to as hypopituitarism, combined pituitary hormone deficiency (CPHD), multiple pituitary hormone deficiency (MPHD) or panhypopituitarism. Children without any identifiable cause of their GHD are commonly labeled as having idiopathic hypopituitarism. MRI imaging is the technique of choice in the diagnosis of children with hypopituitarism. Marked differences in MRI pituitary gland morphology suggest different etiologies of GHD and different prognoses. Pituitary stalk agenesis and ectopic posterior pituitary (EPP) are specific markers of permanent GHD, and patients with these MRI findings show a different clinical and endocrine outcome compared to those with normal pituitary anatomy or hypoplastic pituitary alone. Furthermore, the classic triad of ectopic posterior pituitary gland, pituitary stalk hypoplasia/agenesis, and anterior pituitary gland hypoplasia is generally associated with permanent GHD. T2 DRIVE images aid in the identification of pituitary stalk without the use of contrast medium administration. Future developments in imaging techniques will undoubtedly reveal additional insights. Mutations in a number of genes encoding transcription factors - such as HESX1, SOX2, SOX3, LHX3, LHX4, PROP1, POU1F1, PITX, GLI3, GLI2, OTX2, ARNT2, IGSF1, FGF8, FGFR1, PROKR2, PROK2, CHD7, WDR11, NFKB2, PAX6, TCF7L1, IFT72, GPR161 and CDON - have been associated with pituitary dysfunction and abnormal pituitary gland development; the correlation of genetic mutations to endocrine and MRI phenotypes has improved our knowledge of pituitary development and management of patients with hypopituitarism, both in terms of possible genetic counseling, and of early diagnosis of evolving anterior pituitary hormone deficiencies.
Collapse
Affiliation(s)
- Natascia Di Iorgi
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Giovanni Morana
- Neuroradiology Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Anna Elsa Maria Allegri
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Flavia Napoli
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Roberto Gastaldi
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Annalisa Calcagno
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Giuseppa Patti
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Sandro Loche
- SSD Endocrinologia Pediatrica, Ospedale Pediatrico Microcitemico "A. Cao", Cagliari, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy.
| |
Collapse
|
15
|
Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LYM, Daly AZ, Ajmal A, Pérez Millán MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr Rev 2016; 37:636-675. [PMID: 27828722 PMCID: PMC5155665 DOI: 10.1210/er.2016-1101] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity. We discuss approaches for future research in the genetics of CPHD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Akima S George
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michelle L Brinkmeier
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda H Mortensen
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Gergics
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Leonard Y M Cheung
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Alexandre Z Daly
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Adnan Ajmal
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - María Ines Pérez Millán
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - A Bilge Ozel
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jacob O Kitzman
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan E Mills
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jun Z Li
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sally A Camper
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
16
|
Tak HJ, Park TJ, Piao Z, Lee SH. Separate development of the maxilla and mandible is controlled by regional signaling of the maxillomandibular junction during avian development. Dev Dyn 2016; 246:28-40. [PMID: 27756109 DOI: 10.1002/dvdy.24465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Syngnathia is a congenital craniofacial disorder characterized by bony or soft tissue fusion of upper and lower jaws. Previous studies suggested some causative signals, such as Foxc1 or Bmp4, cause the disruption of maxillomandibular identity, but their location and the interactive signals involved remain unexplored. We wanted to examine the embryonic origin of syngnathia based on the assumption that it may be located at the separation between the maxillary and mandibular processes. This region, known as the maxillomandibular junction (MMJ), is involved in segregation of cranial neural crest-derived mesenchyme into the presumptive upper and lower jaws. RESULTS Here we investigated the role of Fgf, Bmp, and retinoid signaling during development of MMJ in chicken embryos. By changing the levels of these signals with bead implants, we induced syngnathia with microstomia on the treated side, which showed increased Barx1 and neural cell adhesion molecule (NCAM) expression. Redistribution of proliferating cells was also observed at the proximal region to maxillary and mandibular arch around MMJ. CONCLUSIONS We propose that interactive molecular signaling by Fgfs, Bmps, and retinoids around MMJ is required for normal separation of the maxilla and mandible, as well as the proper positioning of beak commissure during early facial morphogenesis. Developmental Dynamics 246:28-40, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hye-Jin Tak
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Tae-Jin Park
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Zhenngu Piao
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital of Guangzhou Medical College, GuangZhou City, China
| | - Sang-Hwy Lee
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Korea
| |
Collapse
|
17
|
Prenatal Diagnosis of Isolated Agnathia-Otocephaly: A Case Report and Review of the Literature. Case Rep Obstet Gynecol 2016; 2016:8512351. [PMID: 27579201 PMCID: PMC4989077 DOI: 10.1155/2016/8512351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 11/27/2022] Open
Abstract
Agnathia is a rare disease characterized by the absence of a mandible. Few cases of prenatally diagnosed isolated agnathia have been reported. We present a case report and review of the literature of prenatally diagnosed agnathia. A 38-year-old woman (gravida 0, para 0) was referred to our hospital at 28 weeks and 3 days of gestation for fetal evaluation because of polyhydramnios and suspected facial anomalies. Three-dimensional ultrasonography and MRI indicated agnathia. Premature rupture of the membranes occurred before the parents could reach a decision on the postnatal treatment. We performed emergency cesarean section on the second day of the 33rd week of gestation. The neonate was deemed nonresuscitable and he died of airway obstruction shortly after birth. Because agnathia is associated with very poor prognosis, accurate prenatal diagnosis and detailed counseling should be promptly provided before unexpected delivery to the parents for the determination of postnatal treatment.
Collapse
|
18
|
Latypova X, Bordereau S, Bleriot A, Pichon O, Poulain D, Briand A, Le Caignec C, Isidor B. Mandibular dysostosis without microphthalmia caused by OTX2 deletion. Am J Med Genet A 2016; 170:2466-70. [PMID: 27378064 DOI: 10.1002/ajmg.a.37837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/23/2016] [Indexed: 11/06/2022]
Abstract
Mutations in OTX2 are mostly identified in patients with anophthalmia/microphthalmia with variable severity. The OTX2 homeobox gene plays a crucial role in craniofacial morphogenesis during early embryo development. We report for the first time a patient with a mandibular dysostosis caused by a 120 kb deletion including the entire coding sequence of OTX2, identified by array CGH. No ocular malformations were identified after extended ophthalmologic examination. Our data refine the clinical spectrum associated with OTX2 mutations and suggests that OTX2 haploinsufficiency should be considered as a possible cause for isolated mandibular dysostosis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xénia Latypova
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Sylvain Bordereau
- Service d'Ophtalmologie, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Alice Bleriot
- Service d'Ophtalmologie, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Olivier Pichon
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Damien Poulain
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Annaïg Briand
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Cédric Le Caignec
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,INSERM, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France
| | - Bertrand Isidor
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,INSERM, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France
| |
Collapse
|
19
|
Reis LM, Semina EV. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma. ACTA ACUST UNITED AC 2015; 105:96-113. [PMID: 26046913 DOI: 10.1002/bdrc.21097] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia, and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors, confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and finally, provide an avenue for the development and testing of therapeutic interventions.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
20
|
Sergouniotis PI, Urquhart JE, Williams SG, Bhaskar SS, Black GC, Lovell SC, Whitby DJ, Newman WG, Clayton-Smith J. Agnathia-otocephaly complex and asymmetric velopharyngeal insufficiency due to an in-frame duplication in OTX2. J Hum Genet 2015; 60:199-202. [PMID: 25589041 DOI: 10.1038/jhg.2014.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 02/05/2023]
Abstract
Agnathia-otocephaly complex is a malformation characterized by absent/hypoplastic mandible and abnormally positioned ears. Mutations in two genes, PRRX1 and OTX2, have been described in a small number of families with this disorder. We performed clinical and genetic testing in an additional family. The proband is a healthy female with a complicated pregnancy history that includes two offspring diagnosed with agnathia-otocephaly during prenatal ultrasound scans. Exome sequencing was performed in fetal DNA from one of these two offspring revealing a heterozygous duplication in OTX2: c.271_273dupCAG, p.(Gln91dup). This change leads to the insertion of a glutamine within the OTX2 homeodomain region, and is predicted to alter this signaling molecule's ability to interact with DNA. The same variant was also identified in the proband's clinically unaffected 38-year-old husband and their 9-year-old daughter, who presented with a small mandible, normal ears and velopharyngeal insufficiency due to a short hemi-palate. This unusual presentation of OTX2-related disease suggests that OTX2 might have a role in palatal hypoplasia cases. A previously unreported OTX2 variant associated with extreme intrafamilial variability is described and the utility of exome sequencing as a tool to confirm the diagnosis of agnathia-otocephaly and to inform the reproductive decisions of affected families is highlighted.
Collapse
Affiliation(s)
- Panagiotis I Sergouniotis
- 1] Institute of Human Development, University of Manchester, Manchester, UK [2] Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Jill E Urquhart
- 1] Institute of Human Development, University of Manchester, Manchester, UK [2] Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Simon G Williams
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Sanjeev S Bhaskar
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Graeme C Black
- 1] Institute of Human Development, University of Manchester, Manchester, UK [2] Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Simon C Lovell
- Department of Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - David J Whitby
- North West, Isle of Man and North Wales Cleft Lip and Palate Network, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - William G Newman
- 1] Institute of Human Development, University of Manchester, Manchester, UK [2] Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Jill Clayton-Smith
- 1] Institute of Human Development, University of Manchester, Manchester, UK [2] Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|