1
|
Thakur A, Saradhi Mettu V, Singh DK, Prasad B. Effect of probenecid on blood levels and renal elimination of furosemide and endogenous compounds in rats: Discovery of putative organic anion transporter biomarkers. Biochem Pharmacol 2023; 218:115867. [PMID: 37866801 PMCID: PMC10900896 DOI: 10.1016/j.bcp.2023.115867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Transporter-mediated drug-drug interactions (DDIs) are assessed using probe drugs and in vitro and in vivo models during drug development. The utility of endogenous metabolites as transporter biomarkers is emerging for prediction of DDIs during early phases of clinical trials. Endogenous metabolites such as pyridoxic acid and kynurenic acid have shown potential to predict DDIs mediated by organic anion transporters (OAT1 and OAT3). However, these metabolites have not been assessed in rats as potential transporter biomarkers. We carried out a rat pharmacokinetic DDI study using probenecid and furosemide as OAT inhibitor and substrate, respectively. Probenecid administration led to a 3.8-fold increase in the blood concentrations and a 3-fold decrease in renal clearance of furosemide. High inter-individual and intra-day variability in pyridoxic acid and kynurenic acid, and no or moderate effect of probenecid administration on these metabolites suggest their limited utility for prediction of Oat-mediated DDI in rats. Therefore, rat blood and urine samples were further analysed using untargeted metabolomics. Twenty-one m/z features (out of >8000 detected features) were identified as putative biomarkers of rat Oat1 and Oat3 using a robust biomarker qualification approach. These m/z features belong to metabolic pathways such as fatty acid analogues, peptides, prostaglandin analogues, bile acid derivatives, flavonoids, phytoconstituents, and steroids, and can be used as a panel to decrease variability caused by processes other than Oats. When validated, these putative biomarkers will be useful in predicting DDIs caused by Oats in rats.
Collapse
Affiliation(s)
- Aarzoo Thakur
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Vijaya Saradhi Mettu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Dilip K Singh
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Bhagwat Prasad
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
| |
Collapse
|
2
|
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, Bhatnagar V, Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev 2015; 95:83-123. [PMID: 25540139 PMCID: PMC4281586 DOI: 10.1152/physrev.00025.2013] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the "Remote Sensing and Signaling Hypothesis," which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Kevin T Bush
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Gleb Martovetsky
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Sun-Young Ahn
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Henry C Liu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Erin Richard
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Vibha Bhatnagar
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Wu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
3
|
Nakajima T. Pitting type of pretibial edema in a patient with silent thyroiditis successfully treated by angiotensin II receptor blockade. Am J Case Rep 2014; 15:111-4. [PMID: 24665353 PMCID: PMC3962324 DOI: 10.12659/ajcr.889854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/19/2013] [Indexed: 11/27/2022] Open
Abstract
Patient: Female, 56 Final Diagnosis: Thyroiditis – silent Symptoms: Palpitations • pretibial pitting edema • short of breath • sweating Medication: — Clinical Procedure: — Specialty: Endocrinology and Metabolic
Collapse
|