1
|
Liu Q, Pei Y, Xie Q, Bao W, Li X, Luan J, Han J. Renal Artery Coil Embolization as an Endovascular Approach for Establishing a Rabbit Model of Chronic Kidney Disease. J Vasc Interv Radiol 2024; 35:1234-1241.e3. [PMID: 38663515 DOI: 10.1016/j.jvir.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE To investigate the safety and feasibility of renal artery coil embolization for establishing chronic kidney disease (CKD) in rabbits. MATERIALS AND METHODS Ten male adult New Zealand rabbits underwent renal artery coil embolization. Initially, the main renal artery on 1 side was completely embolized, followed by embolization of approximately two-thirds of the primary branches of the contralateral renal artery 1 week later. Four rabbits were randomly chosen for sacrifice at 4 weeks after embolization, whereas the remaining 6 were sacrificed at 8 weeks after embolization. The assessment encompassed the animals' general condition, angiography, biochemical parameters, inflammatory markers, and histopathological examination of the kidneys and hearts. RESULTS Four weeks after embolization, serum creatinine level showed a substantial increase (2.4 mg/dL [SD ± 0.6]; P = .009 vs baseline), with a subsequent 4.12-fold elevation at 8 weeks after embolization (4.9 mg/dL [SD ± 1.4]; P < .001 vs baseline). Additionally, considerable increases in serum blood urea nitrogen, calcium, and potassium ions were observed at 8 weeks after embolization (58.3 mg/dL [SD ± 19.0]; P < .001 vs baseline; 23.1 mg/dL [SD ± 4.4]; P < .001 vs baseline; and 6.3 mEq/L [SD ± 0.7]; P < .001 vs baseline, respectively). The completely embolized kidney exhibited notable atrophy, severe fibrosis, and cortical calcification, whereas the contralateral partially embolized kidney displayed compensatory hypertrophy, along with glomerulosclerosis, tubular dilation, tubular casts, and interstitial fibrosis. CONCLUSIONS Renal artery coil embolization proved to be effective and safe for establishing a CKD model in rabbits.
Collapse
Affiliation(s)
- Qijia Liu
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Yun Pei
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Qian Xie
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Wenhan Bao
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Xuan Li
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Jingyuan Luan
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Jintao Han
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Watanabe Y, Nessa N, Toba H, Kobara M, Nakata T. Angelica acutiloba Exerts Antihypertensive Effect and Improves Insulin Resistance in Spontaneously Hypertensive Rats Fed with a High-Fat Diet. Pharmacology 2022; 107:188-196. [PMID: 35038707 DOI: 10.1159/000520982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Angelica acutiloba is one of the crude drugs used in Chinese herbal medicine, and its intake is expected to improve metabolic syndrome-associated disorders. Here, we examined the effects of A. acutiloba extract (AAE) on hypertension and insulin resistance induced by the treatment of high-fat diet (HFD) to spontaneously hypertensive rats (SHRs). Then, we investigated the mechanisms associated with the effects of AAE. METHODS AAE was administered to HFD-fed SHRs. Systolic blood pressure (SBP), sympathetic nerve activity, hypothalamic angiotensin-converting enzyme (ACE) activity, blood glucose level, plasma insulin concentration, visceral fat mass, and gene expression of tumor necrosis factor-alpha (TNF-α) in the visceral fat were evaluated. RESULTS AAE reduced the increases in SBP and hypothalamic ACE activity observed in the HFD-fed SHRs, whereas the suppressive effect on sympathetic nerve activity was slight. Environmental stress-induced pressure and sympathetic overactivity were suppressed by the treatment of AAE. It also decreased the increase in the blood glucose level, plasma insulin concentration, homeostasis model assessment for the insulin resistance, and TNF-α gene expression in the visceral fat, but not the increase in the visceral fat mass. CONCLUSION AAE has an antihypertensive effect, suppresses stress-induced hypertension, and improves insulin resistance in HFD-fed SHRs. The suppression of brain ACE activity, sympathetic nerve activity, and inflammation are partly involved in the effects of AAE.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Naseratun Nessa
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroe Toba
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Miyuki Kobara
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tetsuo Nakata
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
3
|
Hwang YJ, Park JH, Cho DH. Activation of AMPK by Telmisartan Decreases Basal and PDGF-stimulated VSMC Proliferation via Inhibiting the mTOR/p70S6K Signaling Axis. J Korean Med Sci 2020; 35:e289. [PMID: 32893519 PMCID: PMC7476795 DOI: 10.3346/jkms.2020.35.e289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Telmisartan, an angiotensin II type 1 receptor blocker (ARB), is widely used to treat hypertension by blocking the renin-angiotensin-aldosterone system. Although abnormal proliferation of vascular smooth muscle cells (VSMCs) is a well-established contributor to the development of various vascular diseases, such as atherosclerosis, the effect of telmisartan on VSMC proliferation and its mechanism of action have not been fully revealed. Herein, we investigated the molecular mechanism whereby telmisartan inhibits rat VSMC proliferation. METHODS We measured VSMC proliferation by MTT assay, and performed inhibitor studies and western blot analyses using basal and platelet-derived growth factor (PDGF)-stimulated rat VSMCs. To elucidate the role of AMP-activated protein kinase (AMPK), we introduced dominant-negative (dn)-AMPKα1 gene into VSMCs. RESULTS Telmisartan decreased VSMC proliferation, which was accompanied by decreased phosphorylations of mammalian target of rapamycin (mTOR) at Ser2448 (p-mTOR-Ser2448) and p70 S6 kinase (p70S6K) at Thr389 (p-p70S6K-Thr389) in dose- and time-dependent manners. Telmisartan dose- and time-dependently increased phosphorylation of AMPK at Thr172 (p-AMPK-Thr172). Co-treatment with compound C, a specific AMPK inhibitor, or ectopic expression of the dn-AMPKα1 gene, significantly reversed telmisartan-inhibited VSMC proliferation, p-mTOR-Ser2448 and p-p70S6K-Thr389 levels. Among the ARBs tested (including losartan and fimasartan), only telmisartan increased p-AMPK-Thr172 and decreased p-mTOR-Ser2448, p-p70S6K-Thr389, and VSMC proliferation. Furthermore, GW9662, a specific and irreversible peroxisome proliferator-activated receptor γ (PPARγ) antagonist, did not affect any of the telmisartan-induced changes. Finally, telmisartan also exhibited inhibitory effects on VSMC proliferation by increasing p-AMPK-Thr172 and decreasing p-mTOR-Ser2448 and p-p70S6K-Thr389 in a PDGF-induced in vitro atherosclerosis model. CONCLUSION These results demonstrated that telmisartan-activated AMPK inhibited basal and PDGF-stimulated VSMC proliferation, at least in part, by downregulating the mTOR/p70S6K signaling axis in a PPARγ-independent manner. These observations suggest that telmisartan could be used to treat arterial narrowing diseases such as atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Yun Jin Hwang
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jung Hyun Park
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Du Hyong Cho
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
4
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
5
|
Gkaliagkousi E, Gavriilaki E, Triantafyllou A, Douma S. Clinical Significance of Endothelial Dysfunction in Essential Hypertension. Curr Hypertens Rep 2016; 17:85. [PMID: 26371063 DOI: 10.1007/s11906-015-0596-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endothelium is recognized as a major determinant of vascular physiology and pathophysiology. Over the last few decades, a plethora of studies have implicated endothelial dysfunction in the progression of atherosclerosis and the subclinical target organ damage observed in essential hypertension. However, the clinical significance of diagnosing endothelial dysfunction in patients with essential hypertension remains under investigation. Although a number of vascular and non-vascular markers of endothelial dysfunction have been proposed, there is an ongoing quest for a marker in the clinical setting that is optimal, inexpensive, and reproducible. In addition, endothelial dysfunction emerges as a promising therapeutic target of agents that are readily available in clinical practice. In this context, a better understanding of its role in essential hypertension becomes of great importance. Here, we aim to investigate the clinical significance of endothelial dysfunction in essential hypertension by accumulating novel data on (a) early diagnosis using robust markers with prognostic value in cardiovascular risk prediction, (b) the association of endothelial dysfunction with subclinical vascular organ damage, and (c) potential therapeutic targets.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece.
| | - Eleni Gavriilaki
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece
| | - Areti Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece
| | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece
| |
Collapse
|
6
|
Bali A, Jaggi AS. Differential role of angiotensin neuropeptides in repeated exposure of immobilization stress of varying duration in mice. Life Sci 2015; 141:90-8. [DOI: 10.1016/j.lfs.2015.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/16/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
7
|
Investigations in foot shock stress of variable intensity in mice: Adaptation and role of angiotensin II. Eur J Pharmacol 2015; 761:86-94. [DOI: 10.1016/j.ejphar.2015.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023]
|
8
|
Kurokawa H, Sugiyama S, Nozaki T, Sugamura K, Toyama K, Matsubara J, Fujisue K, Ohba K, Maeda H, Konishi M, Akiyama E, Sumida H, Izumiya Y, Yasuda O, Kim-Mitsuyama S, Ogawa H. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway. Atherosclerosis 2015; 239:375-85. [PMID: 25682036 DOI: 10.1016/j.atherosclerosis.2015.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/30/2014] [Accepted: 01/26/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). METHODS AND RESULTS In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. CONCLUSIONS Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation.
Collapse
Affiliation(s)
- Hirofumi Kurokawa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Seigo Sugiyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan.
| | - Toshimitsu Nozaki
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Koichi Sugamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Kensuke Toyama
- Department of Pharmacology and Molecular Therapeutics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Junichi Matsubara
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Koichiro Fujisue
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Keisuke Ohba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Maeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Masaaki Konishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Eiichi Akiyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Sumida
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Osamu Yasuda
- Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Kumamoto University, Kumamoto, Japan
| | - Shokei Kim-Mitsuyama
- Department of Pharmacology and Molecular Therapeutics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hisao Ogawa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
9
|
Li BH, Liao SQ, Yin YW, Long CY, Guo L, Cao XJ, Liu Y, Zhou Y, Gao CY, Zhang LL, Li JC. Telmisartan-induced PPARγ activity attenuates lipid accumulation in VSMCs via induction of autophagy. Mol Biol Rep 2014; 42:179-86. [DOI: 10.1007/s11033-014-3757-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/17/2014] [Indexed: 01/05/2023]
|