1
|
Menti GM, Bruzzone M, Zordan MA, Visentin P, Drago A, Dal Maschio M, Megighian A. Optokinetic response in D. melanogaster reveals the nature of common repellent odorants. Sci Rep 2024; 14:22277. [PMID: 39333197 PMCID: PMC11436819 DOI: 10.1038/s41598-024-73221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Animals' ability to orient and navigate relies on selecting an appropriate motor response based on the perception and integration of the environmental information. This is the case, for instance, of the optokinetic response (OKR) in Drosophila melanogaster, where optic flow visual stimulation modulates head movements. Despite a large body of literature on the OKR, there is still a limited understanding, in flies, of the impact on OKR of concomitant, and potentially conflicting, inputs. To evaluate the impact of this multimodal integration, we combined in D. melanogaster, while flying in a tethered condition, the optic flow stimulation leading to OKR with the simultaneous presentation of olfactory cues, based on repellent or masking compounds typically used against noxious insect species. First, this approach allowed us to directly quantify the effect of several substances and of their concentration on the dynamics of the flies' OKR in response to moving gratings by evaluating the number of saccades and the velocity of the slow phase. Subsequently, this analysis was capable of easily revealing the actual effect, i.e. masking vs. repellent, of the compound tested. In conclusion, we show that D. melanogaster, a cost-affordable species, represents a viable option for studying the effects of several compounds on the navigational abilities of insects.
Collapse
Affiliation(s)
- Giulio Maria Menti
- Padova Neuroscience Center, Università degli Studi di Padova, Veneto, Padova, Italy
- Department of Biomedical Sciences, Università degli Studi di Padova, Veneto, Padova, Italy
| | - Matteo Bruzzone
- Department of Neuroscience, Università degli Studi di Padova, Veneto, Padova, Italy
| | | | | | - Andrea Drago
- Entostudio S.r.l, Ponte San Nicolò (PD), Veneto, Italy
| | - Marco Dal Maschio
- Padova Neuroscience Center, Università degli Studi di Padova, Veneto, Padova, Italy
- Department of Biomedical Sciences, Università degli Studi di Padova, Veneto, Padova, Italy
| | - Aram Megighian
- Padova Neuroscience Center, Università degli Studi di Padova, Veneto, Padova, Italy.
- Department of Biomedical Sciences, Università degli Studi di Padova, Veneto, Padova, Italy.
| |
Collapse
|
2
|
Farnworth MS, Montgomery SH. Evolution of neural circuitry and cognition. Biol Lett 2024; 20:20230576. [PMID: 38747685 PMCID: PMC11285921 DOI: 10.1098/rsbl.2023.0576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Neural circuits govern the interface between the external environment, internal cues and outwardly directed behaviours. To process multiple environmental stimuli and integrate these with internal state requires considerable neural computation. Expansion in neural network size, most readily represented by whole brain size, has historically been linked to behavioural complexity, or the predominance of cognitive behaviours. Yet, it is largely unclear which aspects of circuit variation impact variation in performance. A key question in the field of evolutionary neurobiology is therefore how neural circuits evolve to allow improved behavioural performance or innovation. We discuss this question by first exploring how volumetric changes in brain areas reflect actual neural circuit change. We explore three major axes of neural circuit evolution-replication, restructuring and reconditioning of cells and circuits-and discuss how these could relate to broader phenotypes and behavioural variation. This discussion touches on the relevant uses and limitations of volumetrics, while advocating a more circuit-based view of cognition. We then use this framework to showcase an example from the insect brain, the multi-sensory integration and internal processing that is shared between the mushroom bodies and central complex. We end by identifying future trends in this research area, which promise to advance the field of evolutionary neurobiology.
Collapse
Affiliation(s)
- Max S. Farnworth
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
3
|
Tolstenkov O, Mikhaleva Y, Glover JC. A miniaturized nigrostriatal-like circuit regulating locomotor performance in a protochordate. Curr Biol 2023; 33:3872-3883.e6. [PMID: 37643617 DOI: 10.1016/j.cub.2023.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
To gain insight into the evolution of motor control systems at the origin of vertebrates, we have investigated higher-order motor circuitry in the protochordate Oikopleura dioica. We have identified a highly miniaturized circuit in Oikopleura with a projection from a single pair of dopaminergic neurons to a small set of synaptically coupled GABAergic neurons, which in turn exert a disinhibitory descending projection onto the locomotor central pattern generator. The circuit is reminiscent of the nigrostriatopallidal system in the vertebrate basal ganglia, in which disinhibitory circuits release specific movements under the modulatory control of dopamine. We demonstrate further that dopamine is required to optimize locomotor performance in Oikopleura, mirroring its role in vertebrates. A dopamine-regulated disinhibitory locomotor control circuit reminiscent of the vertebrate nigrostriatopallidal system was thus already present at the origin of ancestral chordates and has been maintained in the face of extreme nervous system miniaturization in the urochordate lineage.
Collapse
Affiliation(s)
- Oleg Tolstenkov
- Sars International Centre for Marine Molecular Biology, University of Bergen; Thormøhlensgate 55, 5008 Bergen, Norway
| | - Yana Mikhaleva
- Sars International Centre for Marine Molecular Biology, University of Bergen; Thormøhlensgate 55, 5008 Bergen, Norway
| | - Joel C Glover
- Sars International Centre for Marine Molecular Biology, University of Bergen; Thormøhlensgate 55, 5008 Bergen, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway.
| |
Collapse
|
4
|
Frighetto G, Zordan MA, Castiello U, Megighian A, Martin JR. Dopamine Modulation of Drosophila Ellipsoid Body Neurons, a Nod to the Mammalian Basal Ganglia. Front Physiol 2022; 13:849142. [PMID: 35492587 PMCID: PMC9048027 DOI: 10.3389/fphys.2022.849142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
The central complex (CX) is a neural structure located on the midline of the insect brain that has been widely studied in the last few years. Its role in navigation and goal-oriented behaviors resembles those played by the basal ganglia in mammals. However, the neural mechanisms and the neurotransmitters involved in these processes remain unclear. Here, we exploited an in vivo bioluminescence Ca2+ imaging technique to record the activity in targeted neurons of the ellipsoid body (EB). We used different drugs to evoke excitatory Ca2+-responses, depending on the putative neurotransmitter released by their presynaptic inputs, while concomitant dopamine administration was employed to modulate those excitations. By using a genetic approach to knockdown the dopamine 1-like receptors, we showed that different dopamine modulatory effects are likely due to specific receptors expressed by the targeted population of neurons. Altogether, these results provide new data concerning how dopamine modulates and shapes the response of the ellipsoid body neurons. Moreover, they provide important insights regarding the similitude with mammals as far as the role played by dopamine in increasing and stabilizing the response of goal-related information.
Collapse
Affiliation(s)
- Giovanni Frighetto
- Department of General Psychology, University of Padova, Padova, Italy
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Mauro A. Zordan
- Department of Biology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| | - Aram Megighian
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jean-René Martin
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
- *Correspondence: Jean-René Martin,
| |
Collapse
|
5
|
Bennett MS. Five Breakthroughs: A First Approximation of Brain Evolution From Early Bilaterians to Humans. Front Neuroanat 2021; 15:693346. [PMID: 34489649 PMCID: PMC8418099 DOI: 10.3389/fnana.2021.693346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Retracing the evolutionary steps by which human brains evolved can offer insights into the underlying mechanisms of human brain function as well as the phylogenetic origin of various features of human behavior. To this end, this article presents a model for interpreting the physical and behavioral modifications throughout major milestones in human brain evolution. This model introduces the concept of a "breakthrough" as a useful tool for interpreting suites of brain modifications and the various adaptive behaviors these modifications enabled. This offers a unique view into the ordered steps by which human brains evolved and suggests several unique hypotheses on the mechanisms of human brain function.
Collapse
|
6
|
Smith FW, Cumming M, Goldstein B. Analyses of nervous system patterning genes in the tardigrade Hypsibius exemplaris illuminate the evolution of panarthropod brains. EvoDevo 2018; 9:19. [PMID: 30069303 PMCID: PMC6065069 DOI: 10.1186/s13227-018-0106-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Both euarthropods and vertebrates have tripartite brains. Several orthologous genes are expressed in similar regionalized patterns during brain development in both vertebrates and euarthropods. These similarities have been used to support direct homology of the tripartite brains of vertebrates and euarthropods. If the tripartite brains of vertebrates and euarthropods are homologous, then one would expect other taxa to share this structure. More generally, examination of other taxa can help in tracing the evolutionary history of brain structures. Tardigrades are an interesting lineage on which to test this hypothesis because they are closely related to euarthropods, and whether they have a tripartite brain or unipartite brain has recently been a focus of debate. RESULTS We tested this hypothesis by analyzing the expression patterns of six3, orthodenticle, pax6, unplugged, and pax2/5/8 during brain development in the tardigrade Hypsibius exemplaris-formerly misidentified as Hypsibius dujardini. These genes were expressed in a staggered anteroposterior order in H. exemplaris, similar to what has been reported for mice and flies. However, only six3, orthodenticle, and pax6 were expressed in the developing brain. Unplugged was expressed broadly throughout the trunk and posterior head, before the appearance of the nervous system. Pax2/5/8 was expressed in the developing central and peripheral nervous system in the trunk. CONCLUSION Our results buttress the conclusion of our previous study of Hox genes-that the brain of tardigrades is only homologous to the protocerebrum of euarthropods. They support a model based on fossil evidence that the last common ancestor of tardigrades and euarthropods possessed a unipartite brain. Our results are inconsistent with the hypothesis that the tripartite brain of euarthropods is directly homologous to the tripartite brain of vertebrates.
Collapse
Affiliation(s)
- Frank W. Smith
- Biology Department, University of North Florida, Jacksonville, FL USA
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mandy Cumming
- Biology Department, University of North Florida, Jacksonville, FL USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
7
|
Abstract
In this Guest Editorial, Jeremy Niven and Lars Chittka introduce our special issue on the evolution of nervous systems.
Collapse
|
8
|
Abstract
Regardless of how a nervous system is genetically built, natural selection is acting on the functional outcome of its activity. To understand how nervous systems evolve, it is essential to analyze how their functional units - the neural circuits - change and adapt over time. A neural circuit can evolve in many different ways, and the underlying developmental and genetic mechanisms involve different sets of genes. Therefore, the comparison of gene expression can help reconstructing circuit evolution, as demonstrated by several examples in sensory systems. Functional constraints on neural circuit evolution suggest that in nervous systems developmental and genetic variants do not appear randomly, and that the evolution of neuroanatomy might be biased. Sensory systems, in particular, seem to evolve along trajectories that enhance their evolvability, ensuring adaptation to different environments.
Collapse
Affiliation(s)
- Maria Antonietta Tosches
- Max Planck Institute for Brain Research, Max-von-Laue Strasse 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Wolff GH, Strausfeld NJ. Genealogical correspondence of a forebrain centre implies an executive brain in the protostome-deuterostome bilaterian ancestor. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150055. [PMID: 26598732 DOI: 10.1098/rstb.2015.0055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Orthologous genes involved in the formation of proteins associated with memory acquisition are similarly expressed in forebrain centres that exhibit similar cognitive properties. These proteins include cAMP-dependent protein kinase A catalytic subunit (PKA-Cα) and phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (pCaMKII), both required for long-term memory formation which is enriched in rodent hippocampus and insect mushroom bodies, both implicated in allocentric memory and both possessing corresponding neuronal architectures. Antibodies against these proteins resolve forebrain centres, or their equivalents, having the same ground pattern of neuronal organization in species across five phyla. The ground pattern is defined by olfactory or chemosensory afferents supplying systems of parallel fibres of intrinsic neurons intersected by orthogonal domains of afferent and efferent arborizations with local interneurons providing feedback loops. The totality of shared characters implies a deep origin in the protostome-deuterostome bilaterian ancestor of elements of a learning and memory circuit. Proxies for such an ancestral taxon are simple extant bilaterians, particularly acoels that express PKA-Cα and pCaMKII in discrete anterior domains that can be properly referred to as brains.
Collapse
Affiliation(s)
- Gabriella H Wolff
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA
| | - Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Katz PS. Phylogenetic plasticity in the evolution of molluscan neural circuits. Curr Opin Neurobiol 2016; 41:8-16. [PMID: 27455462 DOI: 10.1016/j.conb.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/17/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
Abstract
Recent research on molluscan nervous systems provides a unique perspective on the evolution of neural circuits. Molluscs evolved large, encephalized nervous systems independently from other phyla. Homologous body-patterning genes were re-specified in molluscs to create a plethora of body plans and nervous system organizations. Octopuses, having the largest brains of any invertebrate, independently evolved a learning circuit similar in organization and function to the mushroom body of insects and the hippocampus of mammals. In gastropods, homologous neurons have been re-specified for different functions. Even species exhibiting similar, possibly homologous behavior have fundamental differences in the connectivity of the neurons underlying that behavior. Thus, molluscan nervous systems provide clear examples of re-purposing of homologous genes and neurons for neural circuits.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, PO Box 5030, Atlanta, GA 30302-5030, USA.
| |
Collapse
|
11
|
Striedter GF, Belgard TG, Chen CC, Davis FP, Finlay BL, Güntürkün O, Hale ME, Harris JA, Hecht EE, Hof PR, Hofmann HA, Holland LZ, Iwaniuk AN, Jarvis ED, Karten HJ, Katz PS, Kristan WB, Macagno ER, Mitra PP, Moroz LL, Preuss TM, Ragsdale CW, Sherwood CC, Stevens CF, Stüttgen MC, Tsumoto T, Wilczynski W. NSF workshop report: discovering general principles of nervous system organization by comparing brain maps across species. J Comp Neurol 2014; 522:1445-53. [PMID: 24596113 DOI: 10.1002/cne.23568] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 01/23/2023]
Abstract
Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of 'reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution.
Collapse
Affiliation(s)
- Georg F Striedter
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Katz PS, Lillvis JL. Reconciling the deep homology of neuromodulation with the evolution of behavior. Curr Opin Neurobiol 2014; 29:39-47. [PMID: 24878891 DOI: 10.1016/j.conb.2014.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 01/05/2023]
Abstract
The evolution of behavior seems inconsistent with the deep homology of neuromodulatory signaling. G protein coupled receptors (GPCRs) evolved slowly from a common ancestor through a process involving gene duplication, neofunctionalization, and loss. Neuropeptides co-evolved with their receptors and exhibit many conserved functions. Furthermore, brain areas are highly conserved with suggestions of deep anatomical homology between arthropods and vertebrates. Yet, behavior evolved more rapidly; even members of the same genus or species can differ in heritable behavior. The solution to the paradox involves changes in the compartmentalization, or subfunctionalization, of neuromodulation; neurons shift their expression of GPCRs and the content of monoamines and neuropeptides. Furthermore, parallel evolution of neuromodulatory signaling systems suggests a route for repeated evolution of similar behaviors.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, PO Box 5030, Atlanta, GA 30302, United States.
| | - Joshua L Lillvis
- Janelia Farm Research Campus, Howard Hughes Medical Institute, United States
| |
Collapse
|
13
|
Striedter GF, Belgard TG, Chen CC, Davis FP, Finlay BL, Güntürkün O, Hale ME, Harris JA, Hecht EE, Hof PR, Hofmann HA, Holland LZ, Iwaniuk AN, Jarvis ED, Karten HJ, Katz PS, Kristan WB, Macagno ER, Mitra PP, Moroz LL, Preuss TM, Ragsdale CW, Sherwood CC, Stevens CF, Stüttgen MC, Tsumoto T, Wilczynski W. NSF workshop report: discovering general principles of nervous system organization by comparing brain maps across species. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:1-8. [PMID: 24603302 DOI: 10.1159/000360152] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of 'reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution.
Collapse
Affiliation(s)
- Georg F Striedter
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, Calif., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Strausfeld NJ, Hirth F. Homology versus convergence in resolving transphyletic correspondences of brain organization. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:215-9. [PMID: 24296550 DOI: 10.1159/000356102] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 11/19/2022]
Abstract
Due to the largely absent fossil record, phylogenetic comparisons of brain structures rely on the analysis of nervous systems in extant taxa, many of which appear to have distinctive and dissimilar neural arrangements. The use of a multitude of comparative criteria, including developmental genetics, phylogenomics and neural circuit architecture, has recently resolved a highly conserved structural and functional ground pattern organization in the arthropod central complex and vertebrate basal ganglia. The minuteness of resemblance is exemplified by orthologous action selection circuits that are formed by homologous gene networks and which can lead to similar pathologies and behavioral disorders. It has been argued, however, that these similarities of brain centers can only be due to convergent evolution. What is still missing is a plausible scenario to explain how convergence could result in such a multitude of similarities and minuteness of resemblances, including gene expression, functional attributes and pathologies. In contrast, homology by common descent is the more parsimonious explanation. Moreover, the divergent elaboration of arthropod central complex and vertebrate basal ganglia does not obscure their shared ground pattern organization and thus genealogical correspondence.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Department of Neuroscience and Centre for Insect Science, University of Arizona, Tucson, Ariz., USA
| | | |
Collapse
|