1
|
AlAshqar A, Reschke L, Kirschen GW, Borahay MA. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies†. Biol Reprod 2021; 105:7-31. [PMID: 33739368 PMCID: PMC8256101 DOI: 10.1093/biolre/ioab054] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence supports the notion that inflammation fosters the development of common benign gynecologic disorders, including uterine leiomyoma, endometriosis, and adenomyosis. Numerous cytokines, chemokines, and growth and transcription factors have indisputable roles in the establishment and maintenance of benign gynecologic disorders by initiating complex cascades that promote proliferation, angiogenesis, and lesion progression. The interaction between inflammation and benign gynecologic disorders is orchestrated by a plethora of factors, including sex steroids, genetics, epigenetics, extracellular matrix, stem cells, cardiometabolic risk factors, diet, vitamin D, and the immune system. The role of inflammation in these disorders is not limited to local pathobiology but also extends to involve clinical sequelae that range from those confined to the reproductive tract, such as infertility and gynecologic malignancies, to systemic complications such as cardiovascular disease. Enhanced understanding of the intricate mechanisms of this association will introduce us to unvisited pathophysiological perspectives and guide future diagnostic and therapeutic implications aimed at reducing the burden of these disorders. Utilization of inflammatory markers, microRNA, and molecular imaging as diagnostic adjuncts may be valuable, noninvasive techniques for prompt detection of benign gynecologic disorders. Further, use of novel as well as previously established therapeutics, such as immunomodulators, hormonal treatments, cardiometabolic medications, and cyclooxygenase-2 and NF-κB inhibitors, can target inflammatory pathways involved in their pathogenesis. In this comprehensive review, we aim to dissect the existing literature on the role of inflammation in benign gynecologic disorders, including the proposed underlying mechanisms and complex interactions, its contribution to clinical sequelae, and the clinical implications this role entails.
Collapse
Affiliation(s)
- Abdelrahman AlAshqar
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Kuwait University, Kuwait City, Kuwait
| | - Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory W Kirschen
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Malvezzi H, Marengo EB, Podgaec S, Piccinato CDA. Endometriosis: current challenges in modeling a multifactorial disease of unknown etiology. J Transl Med 2020; 18:311. [PMID: 32787880 PMCID: PMC7425005 DOI: 10.1186/s12967-020-02471-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic inflammatory hormone-dependent condition associated with pelvic pain and infertility, characterized by the growth of ectopic endometrium outside the uterus. Given its still unknown etiology, treatments usually aim at diminishing pain and/or achieving pregnancy. Despite some progress in defining mode-of-action for drug development, the lack of reliable animal models indicates that novel approaches are required. The difficulties inherent to modeling endometriosis are related to its multifactorial nature, a condition that hinders the recreation of its pathology and the identification of clinically relevant metrics to assess drug efficacy. In this review, we report and comment endometriosis models and how they have led to new therapies. We envision a roadmap for endometriosis research, integrating Artificial Intelligence, three-dimensional cultures and organ-on-chip models as ways to achieve better understanding of physiopathological features and better tailored effective treatments.
Collapse
Affiliation(s)
- Helena Malvezzi
- Hospital Israelita Albert Einstein, São Paulo, SP 05652-900 Brazil
| | - Eliana Blini Marengo
- Instituto Butanta- EstabilidadeBiotech Quality Control, São Paulo, SP 05503-900 Brazil
| | - Sérgio Podgaec
- Hospital Israelita Albert Einstein, São Paulo, SP 05652-900 Brazil
| | | |
Collapse
|
3
|
Lai ZZ, Yang HL, Ha SY, Chang KK, Mei J, Zhou WJ, Qiu XM, Wang XQ, Zhu R, Li DJ, Li MQ. Cyclooxygenase-2 in Endometriosis. Int J Biol Sci 2019; 15:2783-2797. [PMID: 31853218 PMCID: PMC6909960 DOI: 10.7150/ijbs.35128] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022] Open
Abstract
Endometriosis (EMS) is the most common gynecological disease in women of reproductive age, and it is associated with chronic pelvic pain, dyspareunia and infertility. As a consequence of genetic, immune and environmental factors, endometriotic lesions have high cyclooxygenase (COX)-2 and COX-2-derived prostaglandin E2 (PGE2) biosynthesis compared with the normal endometrium. The transcription of the PTGS2 gene for COX-2 is associated with multiple intracellular signals, which converge to cause the activation of mitogen-activated protein kinases (MAPKs). COX-2 expression can be regulated by several factors, such as estrogen, hypoxia, proinflammatory cytokines, environmental pollutants, metabolites and metabolic enzymes, and platelets. High concentrations of COX-2 lead to high cell proliferation, a low level of apoptosis, high invasion, angiogenesis, EMS-related pain and infertility. COX-2-derived PGE2 performs a crucial function in EMS development by binding to EP2 and EP4 receptors. These basic findings have contributed to COX-2-targeted treatment in EMS, including COX-2 inhibitors, hormone drugs and glycyrrhizin. In this review, we summarize the most recent basic research in detail and provide a short summary of COX-2-targeted treatment.
Collapse
Affiliation(s)
- Zhen-Zhen Lai
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Li Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Si-Yao Ha
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - We-Jie Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People's Republic of China
| | - Xue-Min Qiu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Qiu Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou 215008, People's Republic of China
| | - Da-Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China
| |
Collapse
|
4
|
Namavar Jahromi B, Farrokhnia F, Tanideh N, Vijayananda Kumar P, Parsanezhad ME, Alaee S. Comparing The Effects of Glycyrrhiza glabra Root Extract, A Cyclooxygenase-2 Inhibitor (Celecoxib) and A Gonadotropin-Releasing Hormone Analog (Diphereline) in A Rat Model of Endometriosis. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:45-50. [PMID: 30644244 PMCID: PMC6334018 DOI: 10.22074/ijfs.2019.5446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/26/2018] [Indexed: 12/27/2022]
Abstract
Background The purpose of this study was to compare the effects of Glycyrrhiza glabra (Licorice), a cyclooxyge-
nase-2 inhibitor (Celecoxib) and a gonadotropin-releasing hormone analog (Diphereline®), with a control group on
endometrial implants in rats. Materials and Methods In this experimental study, endometriosis was induced in rats by auto transplantation and
after confirmation, the rats were divided into 4 groups that were treated for 6 weeks with normal saline (0.5 ml/day,
orally), licorice extract (3000 mg/kg/day, orally), celecoxib (50 mg/kg, twice a day, orally) or diphereline (3 mg/kg,
intramuscularly). At the end of treatments, the mean area, volume, histopathology and hemosiderin-laden macrophage
(HLM) counts of the endometrial implants were evaluated and compared among the four groups. Results The mean area, volume and HLM counts of the implants in the licorice group were significantly lower than
those of the control group (P<0.001). The histopathologic grades of endometrial implants were significantly decreased
by licorice compared to the control group (P<0.001). There was no significant change in the mentioned parameters in
rats treated with celecoxib compared to the control group. Diphereline was the most potent agent for suppressing the
growth of endometrial implants in terms of all of the above-mentioned parameters. Conclusion Licorice decreased the growth and histopathologic grades of auto-transplanted endometrial implants.
However, while celcoxib had no significant effect, diphereline showed the highest potency for decreasing the endome-
trial growth. Licorice may have the potential to be used as an alternative medication for the treatment of endometriosis.
Collapse
Affiliation(s)
- Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic Address: .,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Farrokhnia
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Ebrahim Parsanezhad
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaee
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.Electronic Address:
| |
Collapse
|
5
|
Wright KR, Mitchell B, Santanam N. Redox regulation of microRNAs in endometriosis-associated pain. Redox Biol 2017; 12:956-966. [PMID: 28499250 PMCID: PMC5429229 DOI: 10.1016/j.redox.2017.04.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 12/22/2022] Open
Abstract
Endometriosis is a chronic, painful condition with unknown etiology. A differential expression of microRNAs in the endometriotic tissues from women with endometriosis with pain compared to those without suggested a plausible role for miRNA or epigenetic mechanisms in the etiology of endometriotic pain. The peritoneal milieu is involved in maintenance of endometriotic lesion and nociception. We recently showed the mechanistic role for oxidized-lipoproteins (ox-LDLs) present in peritoneal fluid (PF) in endometriosis and pain. We explored the possibility of ox-LDLs modulating the expression of miRNAs in a manner similar to PF from women with endometriosis. Expression levels of miRNAs and their predicted nociceptive and inflammatory targets were determined in PF and ox-LDL treated human endometrial cell-lines. Samples from IRB-approved and consented patients with and without endometriosis or pain were used. These were compared to endometrial cell-lines treated with various forms of oxidized-lipoproteins. RNA (including miRNAs) were isolated from treated endometrial cells and expression levels were determined using commercial miRNome arrays. Cell lysates were used in immunoblotting for inflammatory proteins using a protein array. Twenty miRNAs including isoforms of miR-29, miR-181 and let-7 were mutually differentially expressed in cells treated with PF from endometriosis patients with pain and those treated with ox-LDL components. The ox-LDLs and endo-PF treatment also produced significant overexpression of microRNA predicted target genes nerve growth factor, interleukin-6 and prostaglandin E synthase and overexpression of their downstream protein targets Mip1α and MCP1. This study showed similarities between miRNA regulation in PF from endometriotic women and ox-LDLs present in abundance in the PF of these women. Key miRNAs responsible for targeting nociceptive and inflammatory molecules were downregulated in the presence of ox-LDLs and endo-PF, thus playing a role in the etiology of endometriotic pain. These redox-sensitive miRNAs can be of potential use as targets in the treatment of endometriosis-associated pain.
Collapse
Affiliation(s)
- Kristeena Ray Wright
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Brenda Mitchell
- Department of Obstetrics and Gynecology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
6
|
Nenicu A, Gu Y, Körbel C, Menger MD, Laschke MW. Combination therapy with telmisartan and parecoxib induces regression of endometriotic lesions. Br J Pharmacol 2017; 174:2623-2635. [PMID: 28548231 DOI: 10.1111/bph.13874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/24/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Telmisartan suppresses the development of endometriotic lesions. However, the drug also up-regulates the expression of COX-2, which has been suggested to promote the progression of endometriosis. Accordingly, in the present study we analysed whether a combination therapy with telmisartan and a COX-2 inhibitor may be more effective in the treatment of endometriotic lesions than the application of telmisartan alone. EXPERIMENTAL APPROACH Endometriotic lesions were induced in the peritoneal cavity of C57BL/6 mice, which were treated daily with an i.p. injection of telmisartan (10 mg·kg-1 ), parecoxib (5 mg·kg-1 ), a combination of telmisartan and parecoxib or vehicle. Therapeutic effects on lesion survival, growth, vascularization, innervation and protein expression were studied over 4 weeks by high-resolution ultrasound imaging as well as immunohistochemical and Western blot analyses. KEY RESULTS Telmisartan-treated lesions exhibited a significantly reduced lesion volume when compared with vehicle-treated controls and parecoxib-treated lesions. This inhibitory effect of telmisartan was even more pronounced when it was used in combination with parecoxib. The combination therapy resulted in a reduced microvessel density as well as lower numbers of proliferating Ki67-positive cells and higher numbers of apoptotic cleaved caspase-3-positive stromal cells within the lesions. This was associated with a lower expression of COX-2, MMP-9 and p-Akt/Akt when compared with controls. The application of the two drugs further inhibited the ingrowth of nerve fibres into the lesions. CONCLUSIONS AND IMPLICATIONS Combination therapy with telmisartan and a COX-2 inhibitor represents a novel, effective pharmacological strategy for the treatment of endometriosis.
Collapse
Affiliation(s)
- Anca Nenicu
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Christina Körbel
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
7
|
Wu LL, Pang RP, Yin YZ, Shen KF, Zhang PZ. Human chorionic gonadotropin improves endometriosis through downregulation of leptin expression in rats. Gynecol Obstet Invest 2015; 79:189-94. [PMID: 25722014 DOI: 10.1159/000367655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 08/18/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate whether and how human chorionic gonadotropin (HCG) treatment ameliorates endometriosis in an endometriotic rat model. METHODS Twenty-four endometriosis rats were established and were randomly divided into four groups, and then the rats were treated with 19.4, 25.8, and 51.6 IU/100 g weight/day of HCG, respectively. The control group was treated with 0.9% NaCl. After 15 days (3 estrous cycles), the ectopic lesion volume and the expression of leptin protein in eutopic and ectopic endometrium were investigated. RESULTS After HCG treatment, the volumes of endometriotic lesions were significantly smaller than those before treatment. During endometriosis development, the expression of leptin protein in eutopic and ectopic endometrium was remarkably increased. HCG administration reversed leptin upregulation in endometriotic tissues. CONCLUSION HCG therapy appears to be an effective treatment for endometriosis in rats through down-regulation of leptin expression in eutopic and ectopic endometrium.
Collapse
Affiliation(s)
- Ling-Ling Wu
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|