1
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
2
|
Defenderfer MK, Demirayak P, Fleming LL, DeCarlo DK, Stewart P, Visscher KM. Cortical plasticity in central vision loss: Cortical thickness and neurite structure. Hum Brain Mapp 2023; 44:4120-4135. [PMID: 37195035 PMCID: PMC10258531 DOI: 10.1002/hbm.26334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Late-stage macular degeneration (MD) often causes retinal lesions depriving an individual of central vision, forcing them to learn to use peripheral vision for daily tasks. To compensate, many patients develop a preferred retinal locus (PRL), an area of peripheral vision used more often than equivalent regions of spared vision. Thus, associated portions of cortex experience increased use, while portions of cortex associated with the lesion are deprived of sensory input. Prior research has not well examined the degree to which structural plasticity depends on the amount of use across the visual field. Cortical thickness, neurite density, and orientation dispersion were measured at portions of cortex associated with the PRL, the retinal lesion, and a control region in participants with MD as well as age-matched, gender-matched, and education-matched controls. MD participants had significantly thinner cortex in both the cortical representation of the PRL (cPRL) and the control region, compared with controls, but no significant differences in thickness, neurite density, or orientation dispersion were found between the cPRL and the control region as functions of disease or onset. This decrease in thickness is driven by a subset of early-onset participants whose patterns of thickness, neurite density, and neurite orientation dispersion are distinct from matched control participants. These results suggest that people who develop MD earlier in adulthood may undergo more structural plasticity than those who develop it late in life.
Collapse
Affiliation(s)
- Matthew K. Defenderfer
- Civitan International Research CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Neurobiology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Pinar Demirayak
- Civitan International Research CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Neurobiology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Leland L. Fleming
- Civitan International Research CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Neurobiology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Dawn K. DeCarlo
- Department of Ophthalmology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Paul Stewart
- Civitan International Research CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Neurobiology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Kristina M. Visscher
- Civitan International Research CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Neurobiology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
3
|
Dewing JM, Lotery AJ, Ratnayaka JA. The disparity between funding for eye research vs. the high cost of sight-loss in the UK. Eye (Lond) 2023; 37:584-586. [PMID: 36167984 PMCID: PMC9998460 DOI: 10.1038/s41433-022-02228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jennifer M Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK.
| |
Collapse
|
4
|
Darbari E, Ahmadieh H, Daftarian N, Rezaei Kanavi M, Suri F, Sabbaghi H, Elahi E. Mutation Screening of Six Exons of ABCA4 in Iranian Stargardt Disease Patients. J Ophthalmic Vis Res 2022; 17:51-58. [PMID: 35194496 PMCID: PMC8850862 DOI: 10.18502/jovr.v17i1.10170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Stargardt disease type 1 (STGD1) is a recessively inherited retinal disorder that can cause severe visual impairment. ABCA4 mutations are the usual cause of STGD1. ABCA4 codes a transporter protein exclusively expressed in retinal photoreceptor cells. The genecontains 50 exons. Mutations are most frequent in exons 3, 6, 12, and 13, and exons 10 and 42 each contain two common variations. We aimed to screen these exons for mutations in Iranian STGD1 patients. Methods Eighteen STGD1 patients were recruited for genetic analysis. Diagnosis by retina specialists was based on standard criteria, including accumulation of lipofuscin. The six ABCA4 exons were PCR amplified and sequenced by the Sanger method. Results One or more ABCA4-mutated alleles were identified in 5 of the 18 patients (27.8%). Five different mutations including two splice site (c.1356+1G>A and c.5836-2A>G) and three missense mutations (p.Gly1961Glu, p.Gly1961Arg, and p.Gly550Arg) were found. The p.Gly1961Glu mutation was the only mutation observed in two patients. Conclusion As ABCA4 mutations in exons 6, 12, 10, and 42 were identified in approximately 25% of the patients studied, these may be appropriate exons for screening projects. As in other populations, STDG1 causative ABCA4 mutations are heterogeneous among Iranian patients, and p.Gly1961Glu may be relatively frequent.
Collapse
Affiliation(s)
- Ensieh Darbari
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Ahmadieh
- Opthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid University of Medical Sciences, Tehran, Iran.,Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narsis Daftarian
- Opthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid University of Medical Sciences, Tehran, Iran.,Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Opthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid University of Medical Sciences, Tehran, Iran.,Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Suri
- Opthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid University of Medical Sciences, Tehran, Iran
| | - Hamideh Sabbaghi
- Ophthalmic Epidemiology Research Center, Research Institute for ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Optometry, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Sanie-Jahromi F, Nowroozzadeh MH. RPE based gene and cell therapy for inherited retinal diseases: A review. Exp Eye Res 2022; 217:108961. [DOI: 10.1016/j.exer.2022.108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
|
6
|
Julien‐Schraermeyer S, Illing B, Tschulakow A, Taubitz T, Guezguez J, Burnet M, Schraermeyer U. Penetration, distribution, and elimination of remofuscin/soraprazan in Stargardt mouse eyes following a single intravitreal injection using pharmacokinetics and transmission electron microscopic autoradiography: Implication for the local treatment of Stargardt's disease and dry age-related macular degeneration. Pharmacol Res Perspect 2020; 8:e00683. [PMID: 33164337 PMCID: PMC7649431 DOI: 10.1002/prp2.683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in older people in the developed world while Stargardt's disease (SD) is a juvenile macular degeneration and an orphan disease. Both diseases are untreatable and are marked by accumulation of lipofuscin advancing to progressive deterioration of the retinal pigment epithelium (RPE) and retina and subsequent vision loss till blindness. We discovered that a small molecule belonging to the tetrahydropyridoether class of compounds, soraprazan renamed remofuscin, is able to remove existing lipofuscin from the RPE. This study investigated the drug penetration, distribution, and elimination into the eyes of a mouse model for increased lipofuscinogenesis, following a single intravitreal injection. We measured the time course of concentrations of remofuscin in different eye tissues using high-performance liquid chromatography combined with mass spectroscopy (HPLC-MS). We also visualized the penetration and distribution of 3 H-remofuscin in eye sections up to 20 weeks post-injection using transmission electron microscopic (TEM) autoradiography. The distribution of silver grains revealed that remofuscin accumulated specifically in the RPE by binding to the RPE pigments (melanin, lipofuscin and melanolipofuscin) and that it was still detected after 20 weeks. Importantly, the melanosomes in choroidal melanocytes only rarely bind remofuscin emphasizing its potential to serve as an active ingredient in the RPE for the treatment of SD and dry AMD. In addition, our study highlights the importance of electron microscopic autoradiography as it is the only method able to show drug binding with a high intracellular resolution.
Collapse
Affiliation(s)
- Sylvie Julien‐Schraermeyer
- Division of Experimental Vitreoretinal SurgeryCentre for OphthalmologyUniversity of TuebingenTübingenGermany
- STZ Ocutox ‐ Preclinical Drug AssessmentHechingenGermany
| | - Barbara Illing
- Division of Experimental Vitreoretinal SurgeryCentre for OphthalmologyUniversity of TuebingenTübingenGermany
| | - Alexander Tschulakow
- Division of Experimental Vitreoretinal SurgeryCentre for OphthalmologyUniversity of TuebingenTübingenGermany
- STZ Ocutox ‐ Preclinical Drug AssessmentHechingenGermany
| | - Tatjana Taubitz
- Division of Experimental Vitreoretinal SurgeryCentre for OphthalmologyUniversity of TuebingenTübingenGermany
| | | | | | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal SurgeryCentre for OphthalmologyUniversity of TuebingenTübingenGermany
- STZ Ocutox ‐ Preclinical Drug AssessmentHechingenGermany
| |
Collapse
|
7
|
Novel variants associated with Stargardt disease in Chinese patients. Gene 2020; 754:144890. [DOI: 10.1016/j.gene.2020.144890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
|
8
|
Nuzzi R, Dallorto L, Vitale A. Cerebral Modifications and Visual Pathway Reorganization in Maculopathy: A Systematic Review. Front Neurosci 2020; 14:755. [PMID: 32973424 PMCID: PMC7472840 DOI: 10.3389/fnins.2020.00755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 01/14/2023] Open
Abstract
Background Macular degeneration (MD) is one of the most frequent causes of visual deficit, resulting in alterations affecting not only the retina but also the entire visual pathway up to the brain areas. This would seem related not just to signal deprivation but also to a compensatory neuronal reorganization, having significant implications in terms of potential rehabilitation of the patient and therapeutic perspectives. Objective This paper aimed to outline, by analyzing the existing literature, the current understanding of brain structural and functional changes detected with neuroimaging techniques in subjects affected by juvenile and age-related maculopathy. Methods Articles using various typologies of central nervous system (CNS) imaging in at least six patients affected by juvenile or age-related maculopathy were considered. A total of 142 were initially screened. Non-pertinent articles and duplicates were rejected. Finally, 19 articles, including 649 patients, were identified. Results In these sources, both structural and functional modifications were found in MD subjects' CNS. Changes in visual cortex gray matter volume were observed in both age-related MD (AMD) and juvenile MD (JMD); in particular, an involvement of not only its posterior part but also the anterior one suggests further causes besides an input-deprivation mechanism only. White matter degeneration was also found, more severe in JMD than in AMD. Moreover, functional analysis revealed differences in cortical activation patterns between MD and controls, suggesting neuronal circuit reorganization. Interestingly, attention and oculomotor training allowed better visual performances and correlated to a stronger cortical activation, even of the area normally receiving inputs from lesioned macula. Conclusion In MD, structural and functional changes in cerebral circuits and visual pathway can happen, involving both cerebral volume and activation patterns. These modifications, possibly due to neuronal plasticity (already observed and described for several brain areas), can allow patients to compensate for macular damage and gives therapeutic perspectives which could be achievable through an association between oculomotor training and biochemical stimulation of neuronal plasticity.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Laura Dallorto
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Alessio Vitale
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Bakstytė V, Šniurevičiūtė L, Šimienė E, Skruodytė J, Janulevičienė I. Determination of Referential Rates for Optical Coherence Tomography and Optical Coherence Tomography Angiography Flow Deficits in the Macular Choriocapillaris in Ophthalmologically Healthy Children. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E238. [PMID: 32429361 PMCID: PMC7279138 DOI: 10.3390/medicina56050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Despite the growing number of new research publications, normative references for children's optical coherence tomography (OCT) parameters are still not completed. We chose to explore this topic because of the lack of normative parameters that is due to an improvement in different technologies and instruments. Our aim was to determine referential rates of retinal nerve fiber layer (RNFL) thickness and flow deficits (FD%) in the macular choriocapillaris (CC) in normal eyes of ophthalmologically healthy children. Materials and Methods: Ophthalmologically healthy 8- to 14-year-old individuals participated (n = 75) in this study. OCT images were taken using an swept-source-OCT (SS-OCT) instrument (DRI-OCT Triton, Topcon, Tokyo, Japan). The early treatment diabetic retinopathy study (EDTRS) grid (6 × 6 mm) divided the RNFL into the thickness maps. The FD% values of the CC were calculated on the 3 × 3-mm scans in a 1-mm circle (C1), 1.5-mm rim (R1.5), and the entire 2.5-mm circle (C2.5), and on the 6 x 6-mm scans in a 1-mm circle (C1), 1.5-mm rim (R1.5), the entire 2.5-mm circle (C2.5), 2.5-mm rim (R2.5), and 5-mm circle (C5). Results: Both scan quantifications of FD% in the C1, C2.5, and R1.5 sectors were similar, but the 6 × 6-mm scan measurements were statistically significantly smaller than the 3 × 3-mm ones. Significant moderate correlations were found between axial length (AxL) and FD% in the 6 × 6-mm scans, namely C1 (r = -0.347, p = 0.002), C2.5 (r = -0.337, p = 0.003), R1.5 (r = -0.328, p = 0.004), R2.5 (r = -0.306, p = 0.008), and C5 (r = -0.314, p = 0.006). Conclusions: The thinnest RNFL layers were on the temporal and nasal sides. FD% values in the C1, C2.5, and R1.5 sectors were similar between the 3 × 3-mm and 6 × 6-mm scans. The negative moderate correlations between AxL and FD% were found in all C1, C2.5, C5, R1.5, and R2.5 sectors of the 6 × 6-mm scans. Further prospective studies are needed to determine more accurate normative references for children's OCT parameters.
Collapse
Affiliation(s)
- Viktorija Bakstytė
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Liveta Šniurevičiūtė
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Evelina Šimienė
- Department of Ophthalmology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50162 Kaunas, Lithuania; (E.Š.); (J.S.); (I.J.)
| | - Justina Skruodytė
- Department of Ophthalmology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50162 Kaunas, Lithuania; (E.Š.); (J.S.); (I.J.)
| | - Ingrida Janulevičienė
- Department of Ophthalmology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50162 Kaunas, Lithuania; (E.Š.); (J.S.); (I.J.)
| |
Collapse
|
10
|
Romez C, Freedman K, Zaritzky D, Brown JW. Case report of instantaneous resolution of juvenile macular degeneration blindness after proximal intercessory prayer. Explore (NY) 2020; 17:79-83. [PMID: 32234287 DOI: 10.1016/j.explore.2020.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/05/2020] [Accepted: 02/20/2020] [Indexed: 11/30/2022]
Abstract
An 18-year-old female lost the majority of her central vision over the course of three months in 1959. Medical records from 1960 indicate visual acuities (VA) of less than 20/400 for both eyes corresponding to legal blindness. On fundus examination of the eye there were dense yellowish-white areas of atrophy in each fovea and the individual was diagnosed with juvenile macular degeneration (JMD). In 1971, another examination recorded her uncorrected VA as finger counting on the right and hand motion on the left. She was diagnosed with macular degeneration (MD) and declared legally blind. In 1972, having been blind for over 12 years, the individual reportedly regained her vision instantaneously after receiving proximal-intercessory-prayer (PIP). Subsequent medical records document repeated substantial improvement; including uncorrected VA of 20/100 in each eye in 1974 and corrected VAs of 20/30 to 20/40 were recorded from 2001 to 2017. To date, her eyesight has remained intact for forty-seven years.
Collapse
Affiliation(s)
| | - Kenn Freedman
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Joshua W Brown
- Global Medical Research Institute, United States; Department of Psychological & Brain Sciences, Indiana University, 1101 E Tenth St, Bloomington, IN 47401, United States.
| |
Collapse
|
11
|
Hu FY, Li JK, Gao FJ, Qi YH, Xu P, Zhang YJ, Wang DD, Wang LS, Li W, Wang M, Chen F, Shen SM, Xu GZ, Zhang SH, Chang Q, Wu JH. ABCA4 Gene Screening in a Chinese Cohort With Stargardt Disease: Identification of 37 Novel Variants. Front Genet 2019; 10:773. [PMID: 31543898 PMCID: PMC6739639 DOI: 10.3389/fgene.2019.00773] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose: To clarify the mutation spectrum and frequency of ABCA4 in a Chinese cohort with Stargardt disease (STGD1). Methods: A total of 153 subjects, comprising 25 families (25 probands and their family members) and 71 sporadic cases, were recruited for the analysis of ABCA4 variants. All probands with STGD1 underwent a comprehensive ophthalmologic examination. Overall, 792 genes involved in common inherited eye diseases were screened for variants by panel-based next-generation sequencing (NGS). Variants were filtered and analyzed to evaluate possible pathogenicity. Results: The total variant detection rate of at least one ABCA4 mutant allele was 84.3% (129/153): two or three disease-associated variants in 86 subjects (56.2%), one mutant allele in 43 subjects (28.1%), and no variants in 24 subjects (15.7%). Ninety-six variants were identified in the total cohort, which included 62 missense (64%), 15 splicing (16%), 11 frameshift (12%), 6 nonsense (6%), and 2 small insertion or deletion (2%) variants. Thirty-seven novel variants were found, including a de novo variant, c.4561delA. The most prevalent variant was c.101_106delCTTTAT (10.5%), followed by c.2894A > G (6.5%) and c.6563T > C (4.6%), in STGD1 patients from eastern China. Conclusion: Thirty-seven novel variants were detected using panel-based NGS, including one de novo variant, further extending the mutation spectrum of ABCA4. The common variants in a population from eastern China with STGD1 were also identified.
Collapse
Affiliation(s)
- Fang-Yuan Hu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Jian-Kang Li
- BGI-Shenzhen, Shenzhen, China.,Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Feng-Juan Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Yu-He Qi
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Ping Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Yong-Jin Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Dan-Dan Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Lu-Sheng Wang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Wei Li
- BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Min Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Shenzhen Engineering Laboratory for Birth Defects Screening, BGI-Shenzhen, Shenzhen, China
| | | | - Ge-Zhi Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Qing Chang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| |
Collapse
|
12
|
Mutation Spectrum of the ABCA4 Gene in a Greek Cohort with Stargardt Disease: Identification of Novel Mutations and Evidence of Three Prevalent Mutated Alleles. J Ophthalmol 2018; 2018:5706142. [PMID: 29854428 PMCID: PMC5952432 DOI: 10.1155/2018/5706142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/15/2018] [Indexed: 11/18/2022] Open
Abstract
Aim To evaluate the frequency and pattern of disease-associated mutations of ABCA4 gene among Greek patients with presumed Stargardt disease (STGD1). Materials and Methods A total of 59 patients were analyzed for ABCA4 mutations using the ABCR400 microarray and PCR-based sequencing of all coding exons and flanking intronic regions. MLPA analysis as well as sequencing of two regions in introns 30 and 36 reported earlier to harbor deep intronic disease-associated variants was used in 4 selected cases. Results An overall detection rate of at least one mutant allele was achieved in 52 of the 59 patients (88.1%). Direct sequencing improved significantly the complete characterization rate, that is, identification of two mutations compared to the microarray analysis (93.1% versus 50%). In total, 40 distinct potentially disease-causing variants of the ABCA4 gene were detected, including six previously unreported potentially pathogenic variants. Among the disease-causing variants, in this cohort, the most frequent was c.5714+5G>A representing 16.1%, while p.Gly1961Glu and p.Leu541Pro represented 15.2% and 8.5%, respectively. Conclusions By using a combination of methods, we completely molecularly diagnosed 48 of the 59 patients studied. In addition, we identified six previously unreported, potentially pathogenic ABCA4 mutations.
Collapse
|
13
|
OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF CHOROIDAL NEOVASCULARIZATION IN FOUR INHERITED RETINAL DYSTROPHIES. Retina 2017; 36:2339-2347. [PMID: 27336230 DOI: 10.1097/iae.0000000000001159] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To demonstrate the clinical utility of optical coherence tomography (OCT) angiography (OCT-A) in inherited retinal dystrophies complicated by choroidal neovascularization (CNV). METHODS Optical coherence tomography angiography and structural OCT were performed using a 70-kHz spectral domain OCT system using the split-spectrum amplitude-decorrelation angiography algorithm. Semiautomated image processing software was used to segment and measure the CNV. RESULTS Four participants were enrolled to study the following inherited retinal dystrophies complicated by CNV: choroideremia, EFEMP1-related retinopathy, Best vitelliform dystrophy, and adult-onset vitelliform dystrophy. Interpretation of fluorescein angiography was difficult because of abnormal retinal architecture but suggested the presence of CNV. Structural OCT revealed subretinal or subretinal pigment epithelium fibrovascular tissue, within which flow signal was observed on OCT-A. The CNV morphology varied from dense capillary networks in active lesions to asymptomatic large caliber loops. Baseline CNV vessel areas ranged from 0.07 mm to 0.98 mm. After treatment with intravitreal bevacizumab, the CNV in choroideremia decreased in the vessel area then rebounded, whereas the one in EFEMP1-related retinopathy remained largely unchanged. CONCLUSION Optical coherence tomography angiography enables morphologic characterization and quantification of CNV in patients with retinal dystrophies despite distorted retinal architecture, can assess response to treatment, and may facilitate differentiation between active and regressed lesions.
Collapse
|
14
|
Altschwager P, Ambrosio L, Swanson EA, Moskowitz A, Fulton AB. Juvenile Macular Degenerations. Semin Pediatr Neurol 2017; 24:104-109. [PMID: 28941524 PMCID: PMC5709045 DOI: 10.1016/j.spen.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this article, we review the following 3 common juvenile macular degenerations: Stargardt disease, X-linked retinoschisis, and Best vitelliform macular dystrophy. These are inherited disorders that typically present during childhood, when vision is still developing. They are sufficiently common that they should be included in the differential diagnosis of visual loss in pediatric patients. Diagnosis is secured by a combination of clinical findings, optical coherence tomography imaging, and genetic testing. Early diagnosis promotes optimal management. Although there is currently no definitive cure for these conditions, therapeutic modalities under investigation include pharmacologic treatment, gene therapy, and stem cell transplantation.
Collapse
Affiliation(s)
- Pablo Altschwager
- Departamento de Oftalmología, Escuela de Medicina, Pontificia, Universidad Católica de Chile, Santiago, Chile.
| | - Lucia Ambrosio
- Department of Ophthalmology, Children's Hospital, Boston, MA 02115 USA,Department of Ophthalmology, Harvard Medical School, Boston, MA 02115 USA
| | - Emily A. Swanson
- Department of Ophthalmology, Children's Hospital, Boston, MA 02115 USA
| | - Anne Moskowitz
- Department of Ophthalmology, Children's Hospital, Boston, MA 02115 USA,Department of Ophthalmology, Harvard Medical School, Boston, MA 02115 USA
| | - Anne B. Fulton
- Department of Ophthalmology, Children's Hospital, Boston, MA 02115 USA,Department of Ophthalmology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
15
|
Dev Borman A, Rachitskaya A, Suzani M, Sisk RA, Ahmed ZM, Holder GE, Cipriani V, Arno G, Webster AR, Hufnagel RB, Berrocal A, Moore AT. Benign Yellow Dot Maculopathy: A New Macular Phenotype. Ophthalmology 2017; 124:1004-1013. [PMID: 28366503 DOI: 10.1016/j.ophtha.2017.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To describe a novel macular phenotype that is associated with normal visual function. DESIGN Retrospective, observational case series. PARTICIPANTS Thirty-six affected individuals from 23 unrelated families. METHODS This was a retrospective study of patients who had a characteristic macular phenotype. Subjects underwent a full ocular examination, electrophysiologic studies, spectral-domain optical coherence tomography (OCT), and fundus autofluorescence imaging. Genomic analyses were performed using haplotype sharing analysis and whole-exome sequencing. MAIN OUTCOME MEASURES Visual acuity, retinal features, electroretinography, and whole-exome sequencing. RESULTS Twenty-six of 36 subjects were female. The median age of subjects at presentation was 15 years (range, 5-59 years). The majority of subjects were asymptomatic and presented after a routine eye examination (22/36 subjects) or after screening because of a positive family history (13/36 subjects) or by another ophthalmologist (1/36 subjects). Of the 3 symptomatic subjects, 2 had reduced visual acuity secondary to nonorganic visual loss and bilateral ametropic amblyopia with strabismus. Visual acuity was 0.18 logarithm of the minimum angle of resolution (logMAR) or better in 30 of 33 subjects. Color vision was normal in all subjects tested, except for the subject with nonorganic visual loss. All subjects had bilateral symmetric multiple yellow dots at the macula. In the majority of subjects, these were evenly distributed throughout the fovea, but in 9 subjects they were concentrated in the nasal parafoveal area. The dots were hyperautofluorescent on fundus autofluorescence imaging. The OCT imaging was generally normal, but in 6 subjects subtle irregularities at the inner segment ellipsoid band were seen. Electrophysiologic studies identified normal macular function in 17 of 19 subjects and normal full-field retinal function in all subjects. Whole-exome analysis across 3 unrelated families found no pathogenic variants in known macular dystrophy genes. Haplotype sharing analysis in 1 family excluded linkage with the North Carolina macular dystrophy (MCDR1) locus. CONCLUSIONS A new retinal phenotype is described, which is characterized by bilateral multiple early-onset yellow dots at the macula. Visual function is normal, and the condition is nonprogressive. In familial cases, the phenotype seems to be inherited in an autosomal dominant manner, but a causative gene is yet to be ascertained.
Collapse
Affiliation(s)
- Arundhati Dev Borman
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; UCL Institute of Ophthalmology, London, United Kingdom.
| | - Aleksandra Rachitskaya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Martina Suzani
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Robert A Sisk
- Cincinnati Eye Institute, University of Cincinnati Department of Ophthalmology, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Zubair M Ahmed
- Otorhinolaryngology Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Graham E Holder
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Valentina Cipriani
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; UCL Institute of Ophthalmology, London, United Kingdom; UCL Genetics Institute, London, United Kingdom
| | - Gavin Arno
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; UCL Institute of Ophthalmology, London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; UCL Institute of Ophthalmology, London, United Kingdom
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Audina Berrocal
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Anthony T Moore
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; UCL Institute of Ophthalmology, London, United Kingdom; Ophthalmology Department, University of California San Francisco, San Francisco, California
| |
Collapse
|
16
|
Fundus autofluorescence imaging: systematic review of test accuracy for the diagnosis and monitoring of retinal conditions. Eye (Lond) 2017; 31:995-1007. [PMID: 28282065 DOI: 10.1038/eye.2017.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022] Open
Abstract
We conducted a systematic review of the accuracy of fundus autofluorescence (FAF) imaging for diagnosing and monitoring retinal conditions. Searches in November 2014 identified English language references. Sources included MEDLINE, EMBASE, the Cochrane Library, Web of Science, and MEDION databases; reference lists of retrieved studies; and internet pages of relevant organisations, meetings, and trial registries. For inclusion, studies had to report FAF imaging accuracy quantitatively. Studies were critically appraised using QUADAS risk of bias criteria. Two reviewers conducted all review steps. From 2240 unique references identified, eight primary research studies met the inclusion criteria. These investigated diagnostic accuracy of FAF imaging for choroidal neovascularisation (one study), reticular pseudodrusen (three studies), cystoid macular oedema (two studies), and diabetic macular oedema (two studies). Diagnostic sensitivity of FAF imaging ranged from 32 to 100% and specificity from 34 to 100%. However, owing to methodological limitations, including high and/or unclear risks of bias, none of these studies provides conclusive evidence of the diagnostic accuracy of FAF imaging. Study heterogeneity precluded meta-analysis. In most studies, the patient spectrum was not reflective of those who would present in clinical practice and no studies adequately reported whether FAF images were interpreted consistently. No studies of monitoring accuracy were identified. An update in October 2016, based on MEDLINE and internet searches, identified four new studies but did not alter our conclusions. Robust quantitative evidence on the accuracy of FAF imaging and how FAF images are interpreted is lacking. We provide recommendations to address this.
Collapse
|
17
|
COMPARISON OF MANUAL AND SEMIAUTOMATED FUNDUS AUTOFLUORESCENCE ANALYSIS OF MACULAR ATROPHY IN STARGARDT DISEASE PHENOTYPE. Retina 2016; 36:1216-21. [PMID: 26583307 DOI: 10.1097/iae.0000000000000870] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate manual and semiautomated grading techniques for assessing decreased fundus autofluorescence (DAF) in patients with Stargardt disease phenotype. METHODS Certified reading center graders performed manual and semiautomated (region finder-based) grading of confocal scanning laser ophthalmoscopy (cSLO) fundus autofluorescence (FAF) images for 41 eyes of 22 patients. Lesion types were defined based on the black level and sharpness of the border: definite decreased autofluorescence (DDAF), well, and poorly demarcated questionably decreased autofluorescence (WDQDAF, PDQDAF). Agreement in grading between the two methods and inter- and intra-grader agreement was assessed by kappa coefficients (κ) and intraclass correlation coefficients (ICC). RESULTS The mean ± standard deviation (SD) area was 3.07 ± 3.02 mm for DDAF (n = 31), 1.53 ± 1.52 mm for WDQDAF (n = 9), and 6.94 ± 10.06 mm for PDQDAF (n = 17). The mean ± SD absolute difference in area between manual and semiautomated grading was 0.26 ± 0.28 mm for DDAF, 0.20 ± 0.26 mm for WDQDAF, and 4.05 ± 8.32 mm for PDQDAF. The ICC (95% confidence interval) for method comparison was 0.992 (0.984-0.996) for DDAF, 0.976 (0.922-0.993) for WDQDAF, and 0.648 (0.306-0.842) for PDQDAF. Inter- and intra-grader agreement in manual and semiautomated quantitative grading was better for DDAF (0.981-0.996) and WDQDAF (0.995-0.999) than for PDQDAF (0.715-0.993). CONCLUSION Manual and semiautomated grading methods showed similar levels of reproducibility for assessing areas of decreased autofluorescence in patients with Stargardt disease phenotype. Excellent agreement and reproducibility were observed for well demarcated lesions.
Collapse
|
18
|
BEST1: the Best Target for Gene and Cell Therapies. Mol Ther 2015; 23:1805-9. [PMID: 26388462 DOI: 10.1038/mt.2015.177] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
A retinal pigmented epithelial (RPE) disorder, bestrophinopathy has recently been proven to be amenable to gene and cell-based therapies in preclinical models. RPE disorders and allied retinal degenerations exhibit significant genetic heterogeneity, and diverse mutations can result in similar disease phenotypes. Several RPE disorders have recently become targets for gene therapies in humans. The year 2011 brought a new advance in cell-based therapies, with the Food and Drug Administration approving clinical trials using embryonic stem cells for an RPE disorder known as age-related macular degeneration. Recent studies on induced pluripotent stem (iPS)-RPE generation indicate strong potential for developing patient-specific disease models in vitro, which could eventually enable personalized treatment. This mini-review will briefly highlight the suitability of the retina for gene and cell therapies, the pathophysiology of bestrophinopathy, and the research and treatment opportunities afforded by stem cell and genetic therapies.
Collapse
|