1
|
Wakamatsu Y, Takeda Y, Tamura K, Suzuki K, Kiyonari H, Yamada G. Comparative Analyses Reveal Conserved and Modified Steps in the Testis Descent and Scrotum Development in Mouse and Opossum. Cells Tissues Organs 2024:1-12. [PMID: 39369713 DOI: 10.1159/000541805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION In many mammals, the testes descend from its abdominal position on the mesonephric kidney and are housed in the scrotum. It has been speculated that metatherians and eutherians might have acquired the scrotal testis independently because metatherians have the scrotum cranially to the phallus, while eutherians, such as humans and mice, possess it caudally. Rather, recent studies based on sequence comparisons of testis-descent-related genes indicate that the metatherian-eutherian common ancestor might already possess the descent mechanisms. To further elucidate the path of scrotal testis evolution, it is informative to compare the processes of the descent and scrotum development between metatherian and eutherian model animals. METHODS In this study, we histologically and molecularly compare these processes in gray short-tailed opossum (Monodelphis domestica), the most commonly used metatherian experimental model, and compare them with those in mouse. RESULTS Our observations indicate that, while transabdominal phase of the descent appears to be largely similar, scrotal phase differs due to their distinct scrotum positions. Our cell-labeling analyses and dynamic expression of Gsc1 reveal extensive cell/tissue rearrangements in murine scrotal development. In contrast, Gsc1 is not expressed in the developing genitalia and scrotal primordium of the opossum. CONCLUSION Our results suggest recruitment of new regulatory pathways for the scrotum development and the scrotal phase of the testis descent during the evolution of eutherian mammals.
Collapse
Affiliation(s)
- Yoshio Wakamatsu
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yawara Takeda
- Department of Ecological Developmental Adaptability Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Kunihiro Suzuki
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering (LARGE), RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Gen Yamada
- Department of Plastic Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
2
|
Stadler HS, Peters CA, Sturm RM, Baker LA, Best CJM, Bird VY, Geller F, Hoshizaki DK, Knudsen TB, Norton JM, Romao RLP, Cohn MJ. Meeting report on the NIDDK/AUA Workshop on Congenital Anomalies of External Genitalia: challenges and opportunities for translational research. J Pediatr Urol 2020; 16:791-804. [PMID: 33097421 PMCID: PMC7885182 DOI: 10.1016/j.jpurol.2020.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/02/2023]
Abstract
Congenital anomalies of the external genitalia (CAEG) are a prevalent and serious public health concern with lifelong impacts on the urinary function, sexual health, fertility, tumor development, and psychosocial wellbeing of affected individuals. Complications of treatment are frequent, and data reflecting long-term outcomes in adulthood are limited. To identify a path forward to improve treatments and realize the possibility of preventing CAEG, the National Institute of Diabetes and Digestive and Kidney Diseases and the American Urological Association convened researchers from a range of disciplines to coordinate research efforts to fully understand the different etiologies of these common conditions, subsequent variation in clinical phenotypes, and best practices for long term surgical success. Meeting participants concluded that a central data hub for clinical evaluations, including collection of DNA samples from patients and their parents, and short interviews to determine familial penetrance (small pedigrees), would accelerate research in this field. Such a centralized datahub will advance efforts to develop detailed multi-dimensional phenotyping and will enable access to genome sequence analyses and associated metadata to define the genetic bases for these conditions. Inclusion of tissue samples and integration of clinical studies with basic research using human cells and animal models will advance efforts to identify the developmental mechanisms that are disrupted during development and will add cellular and molecular granularity to phenotyping CAEG. While the discussion focuses heavily on hypospadias, this can be seen as a potential template for other conditions in the realm of CAEG, including cryptorchidism or the exstrophy-epispadias complex. Taken together with long-term clinical follow-up, these data could inform surgical choices and improve likelihood for long-term success.
Collapse
Affiliation(s)
- H Scott Stadler
- Department of Skeletal Biology, Shriners Hospital for Children, 3101 SW Sam Jackson Park Road, Portland, OR, Oregon Health & Science University, Department of Orthopaedics and Rehabilitation, Portland, 97239, OR, USA.
| | - Craig A Peters
- Department of Urology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, 75390-9110, TX, USA; Pediatric Urology, Children's Health System Texas, University of Texas Southwestern, Dallas, 75390, TX, USA.
| | - Renea M Sturm
- Department of Urology, Division of Pediatric Urology, University of California Los Angeles, 200 Medical Plaza #170, Los Angeles, 90095, CA, USA
| | - Linda A Baker
- Department of Urology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, 75390-9110, TX, USA
| | - Carolyn J M Best
- American Urological Association, 1000 Corporate Boulevard, Linthicum, 21090, MD, USA
| | - Victoria Y Bird
- Department of Urology, University of Florida, Gainesville, 32610, FL, USA; National Medical Association and Research Group, 5745 SW 75th Street, #507, Gainesville, 32608, FL, USA
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, 5 Artillerivej, Copenhagen S, DK-2300, Denmark
| | - Deborah K Hoshizaki
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Boulevard, Bethesda, 20892, MD, USA
| | - Thomas B Knudsen
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, 27711, NC, USA
| | - Jenna M Norton
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Boulevard, Bethesda, 20892, MD, USA
| | - Rodrigo L P Romao
- Departments of Surgery and Urology, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, Department of Biology, And UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, 32610, FL, USA.
| |
Collapse
|
3
|
Berio F, Evin A, Goudemand N, Debiais‐Thibaud M. The intraspecific diversity of tooth morphology in the large-spotted catshark Scyliorhinus stellaris: insights into the ontogenetic cues driving sexual dimorphism. J Anat 2020; 237:960-978. [PMID: 32667054 PMCID: PMC7542197 DOI: 10.1111/joa.13257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/02/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Teeth in sharks are shed and replaced throughout their lifetime. Morphological dental changes through ontogeny have been identified in several species and have been correlated with shifts in diet and the acquisition of sexual maturity. However, these changes were rarely quantified in detail along multiple ontogenetic stages, which makes it difficult to infer the developmental processes responsible for the observed plasticity. In this work, we use micro-computed tomography and 3D geometric morphometrics to describe and analyze the tooth size and shape diversity across three ontogenetic stages (hatchling, juvenile, and sexually mature) in the large-spotted catshark Scyliorhinus stellaris (Linnaeus, 1758). We first describe the intra-individual variation of tooth form for each sex at each ontogenetic stage. We provide a tooth morphospace for palatoquadrate and Meckelian teeth and identify dental features, such as relative size and number of cusps, involved in the range of variation of the observed morphologies. We then use these shape data to draw developmental trajectories between ontogenetic stages and for each tooth position within the jaw to characterize ontogenetic patterns of sexual dimorphism. We highlight the emergence of gynandric heterodonty between the juvenile and mature ontogenetic stages, with mature females having tooth morphologies more similar to juveniles' than mature males that display regression in the number of accessory cusps. From these data, we speculate on the developmental processes that could account for such developmental plasticity in S. stellaris.
Collapse
Affiliation(s)
- Fidji Berio
- CNRS, IRD, EPHEUMR5554Institut des Sciences de l’Évolution de Montpellier, ISEMUniversité de MontpellierMontpellierFrance
- Centre National de la Recherche ScientifiqueÉcole Normale Supérieure de LyonInstitut de Génomique Fonctionnelle de LyonUMR 5242Université Claude Bernard Lyon 1Univ. LyonLyonFrance
| | - Allowen Evin
- CNRS, IRD, EPHEUMR5554Institut des Sciences de l’Évolution de Montpellier, ISEMUniversité de MontpellierMontpellierFrance
| | - Nicolas Goudemand
- Centre National de la Recherche ScientifiqueÉcole Normale Supérieure de LyonInstitut de Génomique Fonctionnelle de LyonUMR 5242Université Claude Bernard Lyon 1Univ. LyonLyonFrance
| | - Mélanie Debiais‐Thibaud
- CNRS, IRD, EPHEUMR5554Institut des Sciences de l’Évolution de Montpellier, ISEMUniversité de MontpellierMontpellierFrance
| |
Collapse
|
4
|
Johansson HK, Svingen T. Hedgehog signal disruption, gonadal dysgenesis and reproductive disorders: Is there a link to endocrine disrupting chemicals? Curr Res Toxicol 2020; 1:116-123. [PMID: 34345840 PMCID: PMC8320607 DOI: 10.1016/j.crtox.2020.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Developmental exposure to chemicals that can disrupt sex hormone signaling may cause a broad spectrum of reproductive disorders. This is because reproductive development is tightly regulated by steroid sex hormones. Consequently, non-animal screening methods currently used to test chemicals for potential endocrine disrupting activities typically include steroidogenesis and nuclear receptor assays. In many cases there is a correlation between in vitro and in vivo data examining endocrine disruption, for example between blocked androgen receptor activity and feminized male genitals. However, there are many examples where there is poor, or no, correlation between in vitro data and in vivo effect outcomes in rodent studies, for various reasons. One possible, and less studied, reason for discordance between in vitro and in vivo data is that the mechanisms causing the in vivo effects are not covered by those typically tested for in vitro. This knowledge gap must be addressed if we are to elaborate robust testing strategies that do not rely on animal experimentation. In this review, we highlight the Hedgehog (HH) signaling pathway as a target for environmental chemicals and its potential implications for reproductive disorders originating from early life exposure. A central proposition is that, by disrupting HH signal transduction during critical stages of mammalian development, the endocrine cells of the testes or ovaries fail to develop normally, which ultimately will lead to disrupted sex hormone synthesis and sexual development in both sexes. If this is the case, then such mechanism must also be included in future test strategies aimed at eliminating chemicals that may cause reproductive disorders in humans.
Collapse
Affiliation(s)
- Hanna K.L. Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
5
|
Chen Y, Renfree MB. Hormonal and Molecular Regulation of Phallus Differentiation in a Marsupial Tammar Wallaby. Genes (Basel) 2020; 11:genes11010106. [PMID: 31963388 PMCID: PMC7017150 DOI: 10.3390/genes11010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Congenital anomalies in phalluses caused by endocrine disruptors have gained a great deal of attention due to its annual increasing rate in males. However, the endocrine-driven molecular regulatory mechanism of abnormal phallus development is complex and remains largely unknown. Here, we review the direct effect of androgen and oestrogen on molecular regulation in phalluses using the marsupial tammar wallaby, whose phallus differentiation occurs after birth. We summarize and discuss the molecular mechanisms underlying phallus differentiation mediated by sonic hedgehog (SHH) at day 50 pp and phallus elongation mediated by insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3), as well as multiple phallus-regulating genes expressed after day 50 pp. We also identify hormone-responsive long non-coding RNAs (lncRNAs) that are co-expressed with their neighboring coding genes. We show that the activation of SHH and IGF1, mediated by balanced androgen receptor (AR) and estrogen receptor 1 (ESR1) signalling, initiates a complex regulatory network in males to constrain the timing of phallus differentiation and to activate the downstream genes that maintain urethral closure and phallus elongation at later stages.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32603, USA
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (Y.C.); (M.B.R.)
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (Y.C.); (M.B.R.)
| |
Collapse
|
6
|
Chen Y, Yu H, Pask AJ, Fujiyama A, Suzuki Y, Sugano S, Shaw G, Renfree MB. Hormone-responsive genes in the SHH and WNT/β-catenin signaling pathways influence urethral closure and phallus growth. Biol Reprod 2019; 99:806-816. [PMID: 29767687 DOI: 10.1093/biolre/ioy117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/13/2018] [Indexed: 11/14/2022] Open
Abstract
Environmental endocrine disruptors (EEDs) that affect androgen or estrogen activity may disrupt gene regulation during phallus development to cause hypospadias or a masculinized clitoris. We treated developing male tammar wallabies with estrogen and females with androgen from day 20-40 postpartum (pp) during the androgen imprinting window of sensitivity. Estrogen inhibited phallus elongation but had no effect on urethral closure and did not significantly depress testicular androgen synthesis. Androgen treatment in females did not promote phallus elongation but initiated urethral closure. Phalluses were collected for transcriptome sequencing at day 50 pp when they first become sexually dimorphic to examine changes in two signaling pathways, sonic hedgehog (SHH) and wingless-type MMTV integration site family (WNT)/β-catenin. SHH mRNA and β-catenin were predominantly expressed in the urethral epithelium in the tammar phallus, as in eutherian mammals. Estrogen treatment and castration of males induced an upregulation of SHH, while androgen treatment downregulated SHH. These effects appear to be direct since we detected putative estrogen receptor α (ERα) and androgen receptor (AR) binding sites near SHH. WNT5A, like SHH, was downregulated by androgen, while WNT4 was upregulated in female phalluses after androgen treatment. After estrogen treatment, WIF1 and WNT7A were both downregulated in male phalluses. After castration, WNT9A was upregulated. These results suggest that SHH and WNT pathways are regulated by both estrogen and androgen to direct the proliferation and elongation of the phallus during differentiation. Their response to exogenous hormones makes these genes potential targets of EEDs in the etiology of abnormal phallus development including hypospadias.
Collapse
Affiliation(s)
- Yu Chen
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Hongshi Yu
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Chen Y, Kuroki Y, Shaw G, Pask AJ, Yu H, Toyoda A, Fujiyama A, Renfree MB. Androgen and Oestrogen Affect the Expression of Long Non-Coding RNAs During Phallus Development in a Marsupial. Noncoding RNA 2018; 5:E3. [PMID: 30598023 PMCID: PMC6468475 DOI: 10.3390/ncrna5010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
There is increasing evidence that long non-coding RNAs (lncRNAs) are important for normal reproductive development, yet very few lncRNAs have been identified in phalluses so far. Unlike eutherians, phallus development in the marsupial tammar wallaby occurs post-natally, enabling manipulation not possible in eutherians in which differentiation occurs in utero. We treated with sex steroids to determine the effects of androgen and oestrogen on lncRNA expression during phallus development. Hormonal manipulations altered the coding and non-coding gene expression profile of phalluses. We identified several predicted co-regulatory lncRNAs that appear to be co-expressed with the hormone-responsive candidate genes regulating urethral closure and phallus growth, namely IGF1, AR and ESR1. Interestingly, more than 50% of AR-associated coding genes and lncRNAs were also associated with ESR1. In addition, we identified and validated three novel co-regulatory and hormone-responsive lncRNAs: lnc-BMP5, lnc-ZBTB16 and lncRSPO4. Lnc-BMP5 was detected in the urethral epithelium of male phalluses and was downregulated by oestrogen in males. Lnc-ZBTB16 was downregulated by oestrogen treatment in male phalluses at day 50 post-partum (pp). LncRSPO4 was downregulated by adiol treatment in female phalluses but increased in male phalluses after castration. Thus, the expression pattern and hormone responsiveness of these lncRNAs suggests a physiological role in the development of the phallus.
Collapse
Affiliation(s)
- Yu Chen
- School of BioSciences, The University of Melbourne 3010, VIC, Australia.
| | - Yoko Kuroki
- RIKEN, Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne 3010, VIC, Australia.
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne 3010, VIC, Australia.
| | - Hongshi Yu
- School of BioSciences, The University of Melbourne 3010, VIC, Australia.
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne 3010, VIC, Australia.
| |
Collapse
|
8
|
Chew KY, Renfree MB. Inducing Sex Reversal in Marsupial Mammals. Sex Dev 2016; 10:301-312. [DOI: 10.1159/000450927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 12/24/2022] Open
|
9
|
Gredler ML. Developmental and Evolutionary Origins of the Amniote Phallus. Integr Comp Biol 2016; 56:694-704. [DOI: 10.1093/icb/icw102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
10
|
Wang S, Huang G, Hu Q, Zou Q. A network-based method for the identification of putative genes related to infertility. Biochim Biophys Acta Gen Subj 2016; 1860:2716-24. [PMID: 27102279 DOI: 10.1016/j.bbagen.2016.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Infertility has become one of the major health problems worldwide, with its incidence having risen markedly in recent decades. There is an urgent need to investigate the pathological mechanisms behind infertility and to design effective treatments. However, this is made difficult by the fact that various biological factors have been identified to be related to infertility, including genetic factors. METHODS A network-based method was established to identify new genes potentially related to infertility. A network constructed using human protein-protein interactions based on previously validated infertility-related genes enabled the identification of some novel candidate genes. These genes were then filtered by a permutation test and their functional and structural associations with infertility-related genes. RESULTS Our method identified 23 novel genes, which have strong functional and structural associations with previously validated infertility-related genes. CONCLUSIONS Substantial evidence indicates that the identified genes are strongly related to dysfunction of the four main biological processes of fertility: reproductive development and physiology, gametogenesis, meiosis and recombination, and hormone regulation. GENERAL SIGNIFICANCE The newly discovered genes may provide new directions for investigating infertility. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- ShaoPeng Wang
- College of Life Science, Shanghai University, Shanghai 200444, China.
| | - GuoHua Huang
- College of Life Science, Shanghai University, Shanghai 200444, China.
| | - Qinghua Hu
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of System Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China.
| |
Collapse
|
11
|
Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH. The Genetic and Environmental Factors Underlying Hypospadias. Sex Dev 2015; 9:239-259. [PMID: 26613581 DOI: 10.1159/000441988] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 12/22/2022] Open
Abstract
Hypospadias results from a failure of urethral closure in the male phallus and affects 1 in 200-300 boys. It is thought to be due to a combination of genetic and environmental factors. The development of the penis progresses in 2 stages: an initial hormone-independent phase and a secondary hormone-dependent phase. Here, we review the molecular pathways that contribute to each of these stages, drawing on studies from both human and mouse models. Hypospadias can occur when normal development of the phallus is disrupted, and we provide evidence that mutations in genes underlying this developmental process are causative. Finally, we discuss the environmental factors that may contribute to hypospadias and their potential immediate and transgenerational epigenetic impacts.
Collapse
Affiliation(s)
- Aurore Bouty
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Surgery, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Andrew Pask
- Department of Zoology, University of Melbourne, Melbourne, Vic., Australia
| | - Yves Heloury
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Surgery, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
12
|
Gamat M, Chew KY, Shaw G, Renfree MB. FOXA1 and SOX9 Expression in the Developing Urogenital Sinus of the Tammar Wallaby (Macropus eugenii). Sex Dev 2015; 9:216-28. [PMID: 26406875 DOI: 10.1159/000439499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
The mammalian prostate is a compact structure in humans but multi-lobed in mice. In humans and mice, FOXA1 and SOX9 play pivotal roles in prostate morphogenesis, but few other species have been examined. We examined FOXA1 and SOX9 in the marsupial tammar wallaby, Macropus eugenii, which has a segmented prostate more similar to human than to mouse. In males, prostatic budding in the urogenital epithelium (UGE) was initiated by day 24 postpartum (pp), but in the female the UGE remained smooth and had begun forming the marsupial vaginal structures. FOXA1 was upregulated in the male urogenital sinus (UGS) by day 51 pp, whilst in the female UGS FOXA1 remained basal. FOXA1 was localised in the UGE in both sexes between day 20 and 80 pp. SOX9 was upregulated in the male UGS at day 21-30 pp and remained high until day 51-60 pp. SOX9 protein was localised in the distal tips of prostatic buds which were highly proliferative. The persistent upregulation of the transcription factors SOX9 and FOXA1 after the initial peak and fall of androgen levels suggest that in the tammar, as in other mammals, these factors are required to sustain prostate differentiation, development and proliferation as androgen levels return to basal levels.
Collapse
Affiliation(s)
- Melissa Gamat
- ARC Centre of Excellence in Kangaroo Genomics, Department of Zoology, The University of Melbourne, Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
13
|
Li EH, Liang SJ, Sun WL, Xu DL, Hong Y, Xia SJ, Jiang JT. Expression of the Shh/Bmp4 signaling pathway during the development of anorectal malformations in a male rat model of prenatal exposure to di(n-butyl) phthalate. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00095a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sonic hedgehog (Shh)/bone morphogenetic protein 4 (Bmp4) is an androgen-regulated signaling pathway that has been shown to be crucial for embryonic development.
Collapse
Affiliation(s)
- En-Hui Li
- Department of Urology
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| | - Sheng-Jie Liang
- Department of Pediatric Urology
- Anhui Provincial Children's Hospital
- Hefei
- China
| | - Wen-Lan Sun
- Department of Geriatrics
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| | - Dong-Liang Xu
- Department of Urology
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| | - Yan Hong
- Department of Central Laboratory
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| | - Shu-Jie Xia
- Department of Urology
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| | - Jun-Tao Jiang
- Department of Urology
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| |
Collapse
|
14
|
Renfree MB, Chew KY, Shaw G. Hormone-independent pathways of sexual differentiation. Sex Dev 2014; 8:327-36. [PMID: 24577198 DOI: 10.1159/000358447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
New observations over the last 25 years of hormone-independent sexual dimorphisms have gradually and unequivocally overturned the dogma, arising from Jost's elegant experiments in the mid-1900s, that all somatic sex dimorphisms in vertebrates arise from the action of gonadal hormones. Although we know that Sry, a Y-linked gene, is the primary gonadal sex determinant in mammals, more recent analysis in marsupials, mice, and finches has highlighted numerous sexual dimorphisms that are evident well before the differentiation of the testis and which cannot be explained by a sexually dimorphic hormonal environment. In marsupials, scrotal bulges and mammary primordia are visible before the testis has differentiated due to the expression of a gene(s) on the X chromosome. ZZ and ZW gynandromorph finches have brains that develop in a sexually dimorphic way dependent on their sex chromosome content. In genetically manipulated mice, it is the X chromosomes, not the gonads, that determine many characters including rate of early development, adiposity, and neural circuits. Even spotted hyenas have sexual dimorphisms that cannot be simply explained by hormonal exposure. This review discusses the recent findings that confirm that there are hormone-independent sexual dimorphisms well before the gonads begin to produce their hormones.
Collapse
Affiliation(s)
- Marilyn B Renfree
- Department of Zoology, The University of Melbourne, Melbourne, Vic., Australia
| | | | | |
Collapse
|