1
|
Rodrigues PP, Machado MDA, Pety AM, Oliveira da Silva W, Pieczarka JC, Nagamachi CY. Mapping of Repetitive Sequences in Brachyhypopomus brevirostris (Hypopomidae, Gymnotiformes) from the Brazilian Amazon. Animals (Basel) 2024; 14:1726. [PMID: 38929345 PMCID: PMC11200435 DOI: 10.3390/ani14121726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Brachyhypopomus (Hypopomidae, Gymnotiformes) is a monophyletic genus consisting of 28 formally described species. Karyotypic data are available for 12 species. The same karyotype is described for two species (B. brevirostris and B. hamiltoni), as well as different karyotypes for the same species from distinct locations (B. brevirostris). In this context, B. brevirostris may constitute a cryptic species complex. Thus, in the present study, we analyzed the karyotype of B. brevirostris, from Santarém, Pará, and Tefé, Amazonas, using classical cytogenetics (conventional staining and C-banding) and molecular techniques (fluorescence in situ hybridization using 18S rDNA, 5S rDNA, U2 snRNA, and telomeric probes). The results show that samples from both locations present 2n = 38, with all chromosomes being acrocentric (FC = 38a). In both populations, 18S rDNA sequences are present on only one pair of homologous chromosomes and telomeric sequences occur only at the ends of the chromosomes. In the Tefé sample, the 5S rDNA occurs in two pairs, and the U2 snRNA in three pairs. These results are the first descriptions of these sequences for B. brevirostris samples from the Tefé locality, as well as the first karyotypic description for the Santarém locality. Future cytotaxonomic studies of this genus can benefit from these results.
Collapse
Affiliation(s)
| | | | | | | | | | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil; (P.P.R.); (M.d.A.M.); (A.M.P.); (W.O.d.S.); (J.C.P.)
| |
Collapse
|
2
|
de Almeida BRR, Farias Souza L, Alves TA, Cardoso AL, de Oliveira JA, Augusto Ribas TF, Dos Santos CEV, do Nascimento LAS, Sousa LM, da Cunha Sampaio MI, Martins C, Nagamachi CY, Pieczarka JC, Noronha RCR. Chromosomal organization of multigene families and meiotic analysis in species of Loricariidae (Siluriformes) from Brazilian Amazon, with description of a new cytotype for genus Spatuloricaria. Biol Open 2023; 12:bio060029. [PMID: 37819723 PMCID: PMC10651099 DOI: 10.1242/bio.060029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
In the Amazon, some species of Loricariidae are at risk of extinction due to habitat loss and overexploitation by the ornamental fish market. Cytogenetic data related to the karyotype and meiotic cycle can contribute to understanding the reproductive biology and help management and conservation programs of these fish. Additionally, chromosomal mapping of repetitive DNA in Loricariidae may aid comparative genomic studies in this family. However, cytogenetics analysis is limited in Amazonian locariids. In this study, chromosomal mapping of multigenic families was performed in Scobinancistrus aureatus, Scobinancistrus pariolispos and Spatuloricaria sp. Meiotic analyzes were performed in Hypancistrus zebra and Hypancistrus sp. "pão". Results showed new karyotype for Spatuloricaria sp. (2n=66, NF=82, 50m-10sm-6m). Distinct patterns of chromosomal organization of histone H1, histone H3 and snDNA U2 genes were registered in the karyotypes of the studied species, proving to be an excellent cytotaxonomic tool. Hypotheses to explain the evolutionary dynamics of these sequences in studied Loricariidae were proposed. Regarding H. zebra and H. sp. "pão", we describe the events related to synapse and transcriptional activity during the meiotic cycle, which in both species showed 26 fully synapsed bivalents, with high gene expression only during zygotene and pachytene. Both Hypancistrus species could be used may be models for evaluating changes in spermatogenesis of Loricariidae.
Collapse
Affiliation(s)
- Bruno Rafael Ribeiro de Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Pará. Campus Itaituba. Itaituba, 68183-300, Pará, Brazil
| | - Luciano Farias Souza
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Thyana Ayres Alves
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Adauto Lima Cardoso
- Laboratório Genômica Integrativa, Instituto de Biociências, Universidade Estadual Paulista. Botucatu, CEP 18618-970, São Paulo, Brazil
| | - Juliana Amorim de Oliveira
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Talita Fernanda Augusto Ribas
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Carlos Eduardo Vasconcelos Dos Santos
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | | | - Leandro Melo Sousa
- Faculdade de Ciências Biológicas, Universidade Federal do Pará, Campus de Altamira. Altamira, CEP 68372-040, Pará, Brazil
| | - Maria Iracilda da Cunha Sampaio
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Campus Universitário de Bragança.. Bragança, CEP 68600-000, Pará, Brazil
| | - Cesar Martins
- Laboratório Genômica Integrativa, Instituto de Biociências, Universidade Estadual Paulista. Botucatu, CEP 18618-970, São Paulo, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Genética e Biologia Celular, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| |
Collapse
|
3
|
Azambuja M, Nogaroto V, Moreira-Filho O, Vicari MR. U2 and U4 snDNA Comparative Chromosomal Mapping in the Neotropical Fish Genera Apareiodon and Parodon (Characiformes: Parodontidae). Zebrafish 2023; 20:221-228. [PMID: 37797225 DOI: 10.1089/zeb.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Small nuclear DNA (snDNA) are valuable cytogenetic markers for comparative studies in chromosome evolution because different distribution patterns were found among species. Parodontidae, a Neotropical fish family, is known to have female heterogametic sex chromosome systems in some species. The U2 and U4 snDNA sites have been found to be involved in Z and W chromosome differentiation in Apareiodon sp., Apareiodon affinis, and Parodon hilarii. However, few studies have evaluated snDNA sites as propulsors of chromosome diversification among closely related fish species. In this study, we investigated the distribution of U2 and U4 snDNA clusters in the chromosomes of 10 populations/species belonging to Apareiodon and Parodon, aiming to identify chromosomal homeologies or diversification. In situ localization data revealed a submetacentric pair carrying the U2 snDNA site among the populations/species analyzed. Furthermore, all studied species demonstrated homeology in the location of U4 snDNA cluster in the proximal region of metacentric pair 1, besides an additional signal showing up with a divergence in Apareiodon. Comparative chromosomal mapping of U4 snDNA also helped to reinforce the proposal of the ZZ/ZW1W2 sex chromosome system origin in an A. affinis population. According to cytogenetic data, the study corroborates the diversification in Parodontidae paired species with uncertain taxonomy.
Collapse
Affiliation(s)
- Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
4
|
Santos da Silva K, Glugoski L, Vicari MR, de Souza ACP, Akama A, Pieczarka JC, Nagamachi CY. Mechanisms of Karyotypic Diversification in Ancistrus (Siluriformes, Loricariidae): Inferences from Repetitive Sequence Analysis. Int J Mol Sci 2023; 24:14159. [PMID: 37762461 PMCID: PMC10532334 DOI: 10.3390/ijms241814159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Ancistrus is a highly diverse neotropical fish genus that exhibits extensive chromosomal variability, encompassing karyotypic morphology, diploid chromosome number (2n = 34-54), and the evolution of various types of sex chromosome systems. Robertsonian rearrangements related to unstable chromosomal sites are here described. Here, the karyotypes of two Ancistrus species were comparatively analyzed using classical cytogenetic techniques, in addition to isolation, cloning, sequencing, molecular characterization, and fluorescence in situ hybridization of repetitive sequences (i.e., 18S and 5S rDNA; U1, U2, and U5 snDNA; and telomere sequences). The species analyzed here have different karyotypes: Ancistrus sp. 1 (2n = 38, XX/XY) and Ancistrus cirrhosus (2n = 34, no heteromorphic sex chromosomes). Comparative mapping showed different organizations for the analyzed repetitive sequences: 18S and U1 sequences occurred in a single site in all populations of the analyzed species, while 5S and U2 sequences could occur in single or multiple sites. A sequencing analysis confirmed the identities of the U1, U2, and U5 snDNA sequences. Additionally, a syntenic condition for U2-U5 snDNA was found in Ancistrus. In a comparative analysis, the sequences of rDNA and U snDNA showed inter- and intraspecific chromosomal diversification. The occurrence of Robertsonian rearrangements and other dispersal mechanisms of repetitive sequences are discussed.
Collapse
Affiliation(s)
- Kevin Santos da Silva
- Cytogenetics Laboratory, Center for Advanced Biodiversity Studies Science Institute Biological, Federal University of Pará, Belém 66075-110, Brazil; (K.S.d.S.); (J.C.P.)
| | - Larissa Glugoski
- Fish Cytogenetics Laboratory, Federal University of São Carlos, São Carlos 13565-905, Brazil;
- Laboratory of Chromosome Biology: Structure and Function Department of Structural Biology, Molecular and Genetic, University of Ponta Grossa State, Ponta Grossa 84010-330, Brazil;
| | - Marcelo Ricardo Vicari
- Laboratory of Chromosome Biology: Structure and Function Department of Structural Biology, Molecular and Genetic, University of Ponta Grossa State, Ponta Grossa 84010-330, Brazil;
| | | | - Alberto Akama
- Department of Zoology, Paraense Emilio Goeldi Museum, Belém 66040-170, Brazil;
| | - Julio Cesar Pieczarka
- Cytogenetics Laboratory, Center for Advanced Biodiversity Studies Science Institute Biological, Federal University of Pará, Belém 66075-110, Brazil; (K.S.d.S.); (J.C.P.)
| | - Cleusa Yoshiko Nagamachi
- Cytogenetics Laboratory, Center for Advanced Biodiversity Studies Science Institute Biological, Federal University of Pará, Belém 66075-110, Brazil; (K.S.d.S.); (J.C.P.)
| |
Collapse
|
5
|
Schott SCQ, Glugoski L, Azambuja M, Moreira-Filho O, Vicari MR, Nogaroto V. Comparative Cytogenetic and Sequence Analysis of U Small Nuclear RNA Genes in Three Ancistrus Species (Siluriformes: Loricariidae). Zebrafish 2022; 19:200-209. [PMID: 36099209 DOI: 10.1089/zeb.2022.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ancistrus presents a wide karyotypic diversity, resulting from numeric and structural chromosomal rearrangements. It has been proposed that some genome-specific regions containing repetitive units could organize prone-to-break DNA sites in Loricariidae, triggering chromosomal rearrangements such as Robertsonian fusions (Rb fusions), centric fissions, translocations, and inversions. The tandemly repeats of the small nuclear RNAs (snRNAs) gene families are considered good cytogenetic markers for understanding chromosomal remodeling events among closely related species, but these snRNAs have been scarcely analyzed in Ancistrus. This study presented the nucleotide sequencing and comparative in situ location of U snRNA sequences from Ancistrus aguaboensis, Ancistrus cf. multispinis, and Ancistrus sp. (2n = 50, 52, and 50, respectively), aiming to provide information about snRNA clusters in the genome and chromosome evolution in Ancistrus. U snRNA nucleotide sequences of Ancistrus presented identity to orthologous copies and folded their secondary structures correctly. In situ localization and karyotyping of the three Ancistrus species revealed clustered copies of U2 and U5 snRNA gene families to a single chromosome site, one chromosome pair bearing U1 snRNA sequence, and one main locus of U4 snRNA sequence, besides scattered signals along the chromosomes. Previous studies related the participation of the rRNA gene families in centric fusion events, contributing to chromosome rearrangements and karyotype plasticity present in Loricariidae. In this study, homeologies in U snRNA loci chromosomal locations were detected, indicating the occurrence of conserved sites of these gene families in these three Ancistrus species with 2n = 50 or 52 chromosomes.
Collapse
Affiliation(s)
| | - Larissa Glugoski
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Matheus Azambuja
- Departamento de Genética, Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
6
|
Azambuja M, Orane Schemberger M, Nogaroto V, Moreira-Filho O, Martins C, Ricardo Vicari M. Major and minor U small nuclear RNAs genes characterization in a neotropical fish genome: Chromosomal remodeling and repeat units dispersion in Parodontidae. Gene 2022; 826:146459. [PMID: 35358649 DOI: 10.1016/j.gene.2022.146459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/15/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
In association with many proteins, small nuclear RNAs (snRNAs) organize the spliceosomes that play a significant role in processing precursor mRNAs during gene expression. According to snRNAs genic arrangements, two kinds of spliceosomes (major and minor) can be organized into eukaryotic cells. Although in situ localization of U1 and U2 snDNAs have been performed in fish karyotypes, studies with genomic characterization and functionality of U snRNAs integrated into chromosomal changes on Teleostei are still scarce. This study aimed to achieve a genomic characterization of the U snRNAs genes in Apareiodon sp. (2n = 54, ZZ/ZW), apply these data to recognize functional/defective copies, and map chromosomal changes involving snDNAs in Parodontidae species karyotype diversification. Nine snRNA multigene families (U1, U2, U4, U5, U6, U11, U12, U4atac and U6atac) arranged in putatively functional copies in the genome were analyzed. Proximal Sequence Elements (PSE) and TATA-box promoters occurrence, besides an entire transcribed region and conserved secondary structures, qualify them for spliceosome activity. In addition, several defective copies or pseudogenes were identified for the snRNAs that make up the major spliceosome. In situ localization of snDNAs in five species of Parodontidae demonstrated that U1, U2, and U4 snDNAs were involved in chromosomal location changes or units dispersion. The U snRNAs defective/pseudogenes units dispersion could be favored by the probable occurrence of active retrotransposition enzymes in the Apareiodon genome. The U2 and U4 snDNAs sites were involved in independent events in the differentiation of sex chromosomes among Parodontidae lineages. The study characterized U snRNA genes that compose major and minor spliceosomes in the Apareiodon sp. genome and proposes that their defective copies trigger chromosome differentiation and diversification events in Parodontidae.
Collapse
Affiliation(s)
- Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil.
| | - Michelle Orane Schemberger
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil.
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil.
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, s/n, 18618-689 Botucatu, São Paulo, Brazil.
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil; Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
7
|
Araya-Jaime CA, Silva DMZDA, da Silva LRR, do Nascimento CN, Oliveira C, Foresti F. Karyotype description and comparative chromosomal mapping of rDNA and U2 snDNA sequences in Eigenmannialimbata and E.microstoma (Teleostei, Gymnotiformes, Sternopygidae). COMPARATIVE CYTOGENETICS 2022; 16:127-142. [PMID: 36761809 PMCID: PMC9849054 DOI: 10.3897/compcytogen.v16i2.72190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/09/2022] [Indexed: 06/18/2023]
Abstract
The genus Eigenmannia Jordan et Evermann,1896 includes electric fishes endemic to the Neotropical region with extensive karyotype variability and occurrence of different sex chromosome systems, however, cytogenetic studies within this group are restricted to few species. Here, we describe the karyotypes of Eigenmannialimbata (Schreiner et Miranda Ribeiro, 1903) and E.microstoma (Reinhardt, 1852) and the chromosomal locations of 5S and 18S rDNAs (ribosomal RNA genes) and U2 snDNA (small nuclear RNA gene). Among them, 18S rDNA sites were situated in only one chromosomal pair in both species, and co-localized with 5S rDNA in E.microstoma. On the other hand, 5S rDNA and U2 snRNA sites were observed on several chromosomes, with variation in the number of sites between species under study. These two repetitive DNAs were observed co-localized in one chromosomal pair in E.limbata and in four pairs in E.microstoma. Our study shows a new case of association of these two types of repetitive DNA in the genome of Gymnotiformes.
Collapse
Affiliation(s)
- Cristian Andrés Araya-Jaime
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | | | | | | | - Claudio Oliveira
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Fausto Foresti
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
8
|
Machado MDA, da Silva M, Feldberg E, O'Brien PCM, Ferguson-Smith MA, Pieczarka JC, Nagamachi CY. Chromosome Painting in Gymnotus carapo "Catalão" (Gymnotiformes, Teleostei): Dynamics of Chromosomal Rearrangements in Cryptic Species. Front Genet 2022; 13:832495. [PMID: 35401658 PMCID: PMC8992654 DOI: 10.3389/fgene.2022.832495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The genus Gymnotus is a large monophyletic group of freshwater weakly-electric fishes, with wide distribution in Central and South America. It has 46 valid species divided into six subgenera (Gymnotus, Tijax, Tigre, Lamontianus, Tigrinus and Pantherus) with large chromosome plasticity and diploid numbers (2n) ranging from 34 to 54. Within this rich diversity, there is controversy about whether Gymnotus (Gymnotus) carapo species is a single widespread species or a complex of cryptic species. Cytogenetic studies show different diploid numbers for G. carapo species, ranging from 40 to 54 chromosomes with varied karyotypes found even between populations sharing the same 2n. Whole chromosome painting has been used in studies on fish species and recently has been used for tracking the chromosomal evolution of Gymnotus and assisting in its cytotaxonomy. Comparative genomic mapping using chromosome painting has shown more complex rearrangements in Gymnotus carapo than shown in previous studies by classical cytogenetics. These studies demonstrate that multiple chromosome pairs are involved in its chromosomal reorganization, suggesting the presence of a complex of cryptic species due to a post zygotic barrier. In the present study, metaphase chromosomes of G. carapo occidentalis "catalão" (GCC, 2n = 40, 30m/sm+10st/a) from the Catalão Lake, Amazonas, Brazil, were hybridized with whole chromosome probes derived from the chromosomes of G. carapo (GCA, 2n = 42, 30m/sm+12st/a). The results reveal chromosome rearrangements and a high number of repetitive DNA sites. Of the 12 pairs of G. carapo chromosomes that could be individually identified (GCA 1-3, 6, 7, 9, 14, 16 and 18-21), 8 pairs (GCA 1, 2, 6, 7, 9, 14, 20, 21) had homeology conserved in GCC. Of the GCA pairs that are grouped (GCA [4, 8], [5, 17], [10, 11] and [12, 13, 15]), most kept the number of signals in GCC (GCA [5, 17], [10, 11] and [12, 13, 15]). The remaining chromosomes are rearranged in the GCC karyotype. Analysis of both populations of the G. carapo cytotypes shows extensive karyotype reorganization. Along with previous studies, this suggests that the different cytotypes analyzed here may represent different species and supports the hypothesis that G. carapo is not a single widespread species, but a group of cryptic species.
Collapse
Affiliation(s)
- Milla de Andrade Machado
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Belém, Brazil
| | - Maelin da Silva
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Patricia Caroline Mary O'Brien
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Malcolm Andrew Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Belém, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Belém, Brazil
| |
Collapse
|
9
|
Rodrigues PP, Machado MDA, Pety AM, Silva DDS, de Souza ACP, Pieczarka JC, Nagamachi CY. Archolaemus janeae (Gymnotiformes, Teleostei): First insights into karyotype and repetitive DNA distribution in two populations of the Amazon. Ecol Evol 2021; 11:15468-15476. [PMID: 34824768 PMCID: PMC8601878 DOI: 10.1002/ece3.8092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/19/2021] [Accepted: 08/24/2021] [Indexed: 12/02/2022] Open
Abstract
Archolaemus, one of the five genera of Neotropical freshwater fish of the family Sternopygidae (Gymnotiformes), was long considered a monotypic genus represented by Archolaemus blax. Currently, it consists of six species, most of them occurring in the Amazon region. There are no cytogenetic data for species of this genus. In the present study, we used classical cytogenetics (conventional staining and C-banding) and molecular cytogenetics (probes of telomeric sequences and multigenic families 18S rDNA, 5S rDNA, and U2 snDNA) to study the karyotype of Archolaemus janeae from Xingu and Tapajós rivers in the state of Pará (Brazil). The results showed that the two populations have identical karyotypes with 46 chromosomes: four submetacentric and 42 acrocentric (2n = 46; 4m/sm + 42a). Constitutive heterochromatin occurs in the centromeric region of all chromosomes, in addition to small bands in the interstitial and distal regions of some pairs. The 18S rDNA occurs in the distal region of the short arm of pair 2; the 5S rDNA occurs in five chromosome pairs; and the U2 snDNA sequence occurs in chromosome pairs 3, 6, and 13. No interstitial telomeric sequence was observed. These results show karyotypic similarity between the studied populations suggesting the existence of a single species and are of great importance as a reference for future cytotaxonomic studies of the genus.
Collapse
Affiliation(s)
- Paula Pinto Rodrigues
- Laboratório de CitogenéticaCentro de Estudos Avançados da BiodiversidadeInstituto de Ciências BiológicasUniversidade Federal do Pará (UFPA)BelémBrazil
| | - Milla de Andrade Machado
- Laboratório de CitogenéticaCentro de Estudos Avançados da BiodiversidadeInstituto de Ciências BiológicasUniversidade Federal do Pará (UFPA)BelémBrazil
| | - Ananda Marques Pety
- Laboratório de CitogenéticaCentro de Estudos Avançados da BiodiversidadeInstituto de Ciências BiológicasUniversidade Federal do Pará (UFPA)BelémBrazil
| | | | | | - Julio Cesar Pieczarka
- Laboratório de CitogenéticaCentro de Estudos Avançados da BiodiversidadeInstituto de Ciências BiológicasUniversidade Federal do Pará (UFPA)BelémBrazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de CitogenéticaCentro de Estudos Avançados da BiodiversidadeInstituto de Ciências BiológicasUniversidade Federal do Pará (UFPA)BelémBrazil
| |
Collapse
|
10
|
Sember A, Nguyen P, Perez MF, Altmanová M, Ráb P, Cioffi MDB. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200098. [PMID: 34304595 PMCID: PMC8310710 DOI: 10.1098/rstb.2020.0098] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Despite decades of cytogenetic and genomic research of dynamic sex chromosome evolution in teleost fishes, multiple sex chromosomes have been largely neglected. In this review, we compiled available data on teleost multiple sex chromosomes, identified major trends in their evolution and suggest further trajectories in their investigation. In a compiled dataset of 440 verified records of fish sex chromosomes, we counted 75 multiple sex chromosome systems with 60 estimated independent origins. We showed that male-heterogametic systems created by Y-autosome fusion predominate and that multiple sex chromosomes are over-represented in the order Perciformes. We documented a striking difference in patterns of differentiation of sex chromosomes between male and female heterogamety and hypothesize that faster W sex chromosome differentiation may constrain sex chromosome turnover in female-heterogametic systems. We also found no significant association between the mechanism of multiple sex chromosome formation and percentage of uni-armed chromosomes in teleost karyotypes. Last but not least, we hypothesized that interaction between fish populations, which differ in their sex chromosomes, can drive the evolution of multiple sex chromosomes in fishes. This underlines the importance of broader inter-population sampling in studies of fish sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Petr Nguyen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Manolo F. Perez
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| |
Collapse
|
11
|
Cytogenetic markers using single-sequence probes reveal chromosomal locations of tandemly repetitive genes in scleractinian coral Acropora pruinosa. Sci Rep 2021; 11:11326. [PMID: 34059722 PMCID: PMC8167085 DOI: 10.1038/s41598-021-90580-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/13/2021] [Indexed: 02/04/2023] Open
Abstract
The short and similar sized chromosomes of Acropora pose a challenge for karyotyping. Conventional methods, such as staining of heterochromatic regions, provide unclear banding patterns that hamper identification of such chromosomes. In this study, we used short single-sequence probes from tandemly repetitive 5S ribosomal RNA (rRNA) and core histone coding sequences to identify specific chromosomes of Acropora pruinosa. Both the probes produced intense signals in fluorescence in situ hybridization, which distinguished chromosome pairs. The locus of the 5S rDNA probe was on chromosome 5, whereas that of core histone probe was on chromosome 8. The sequence of the 5S rDNA probe was composed largely of U1 and U2 spliceosomal small nuclear RNA (snRNA) genes and their interspacers, flanked by short sequences of the 5S rDNA. This is the first report of a tandemly repetitive linkage of snRNA and 5S rDNA sequences in Cnidaria. Based on the constructed tentative karyogram and whole genome hybridization, the longest chromosome pair (chromosome 1) was heteromorphic. The probes also hybridized effectively with chromosomes of other Acropora species and population, revealing an additional core histone gene locus. We demonstrated the applicability of short-sequence probes as chromosomal markers with potential for use across populations and species of Acropora.
Collapse
|
12
|
Nascimento CND, Troy WP, Alves JCP, Carvalho ML, Oliveira C, Foresti F. Molecular cytogenetic analyses reveal extensive chromosomal rearrangements and novel B chromosomes in Moenkhausia (Teleostei, Characidae). Genet Mol Biol 2020; 43:e20200027. [PMID: 33156889 PMCID: PMC7649911 DOI: 10.1590/1678-4685-gmb-2020-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
The cytogenetic characteristics of five fish species of the Moenkhausia are described, based on the analysis of specimens collected in different headwater. All the species analyzed presented 2n=50 chromosomes. The C-banding revealed a similar distribution pattern of heterochromatic blocks in all the species, except Moenkhausia nigromarginata. The 5S rDNA sites were distributed on multiple chromosome pairs in all five species. Single and multiple histone H1 sites were observed in all the species, and histone H1 was shown to be co-located with the 18S rRNA gene in a single chromosome pair. The U2 snDNA gene was distributed at multiple sites in all the Moenkhausia species. The presence of B microchromosomes was confirmed in Moenkhausia forestii, while individuals of the three study populations of Moenkhausia oligolepis presented three morphologically distinct types of B chromosome. The chromosomal mapping of the 18S rDNA sites using the FISH technique revealed signals in the B chromosomes of M. forestii, while clusters of the H1 histone and U2 snDNA genes were found in the B chromosomes of M. forestii and M. oligolepis. The classical and molecular cytogenetic markers used in this study revealed ample variation in the Moenkhausia karyotypes, reflecting the dynamic nature of the chromosomal evolution.
Collapse
Affiliation(s)
- Cristiano Neves do Nascimento
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| | - Waldo Pinheiro Troy
- Universidade do Estado de Mato Grosso - UNEMAT, Departamento de Ciências Biológicas, Tangará da Serra, MT, Brazil
| | | | - Margarida Lima Carvalho
- Universidade Federal do Acre - UFAC, Centro de Ciências Biológicas e Naturais, Rio Branco, AC, Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| |
Collapse
|
13
|
Dulz TA, Azambuja M, Nascimento VD, Lorscheider CA, Noleto RB, Moreira-Filho O, Nogaroto V, Diniz D, Affonso PRADM, Vicari MR. Karyotypic Diversification in Two Megaleporinus Species (Characiformes, Anostomidae) Inferred from In Situ Localization of Repetitive DNA Sequences. Zebrafish 2020; 17:333-341. [PMID: 32990531 DOI: 10.1089/zeb.2020.1918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Anostomidae species have conserved diploid numbers (2n = 54), although comparative cytogenetic studies have demonstrated chromosomal rearrangements occurrence among them, especially in repetitive DNA rich regions. The location and distribution of ribosomal DNA (rDNA) and small nuclear RNAs (snRNAs) multigene families are highly dynamic in the genomes of several organisms. In this study, we in situ located the rDNA and snRNA sites in two populations of Megaleporinus obtusidens and a sample of Megaleporinus reinhardti to infer their chromosomal changes in the evolutionary lineages. Both species of Megaleporinus shared 2n = 54 chromosomes with the presence of ZZ/ZW sex chromosome system, but they diverged in relationship to the location of 5S and 45S rDNAs as well as the distribution of snRNAs sites. The characterization of the analyzed sequences revealed the presence of complete rDNA and snRNAs sequences as well as snRNAs containing transposable elements (TEs) and microsatellite repeats. After chromosomal mapping, the sequences encompassing TEs proved to be dispersed through autosomes and accumulated on sex chromosomes. The data demonstrate that intra- and interspecific chromosomal changes occurred involving the multigene family's sites in Megaleporinus karyotypes. Furthermore, we detected TE-like sequences in the differentiation of sex chromosome systems in M. obtusidens and M. reinhardti.
Collapse
Affiliation(s)
- Thais Aparecida Dulz
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil.,Departamento de Ciências Biológicas, Universidade Estadual do Paraná, União da Vitória, Brazil
| | - Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | - Rafael Bueno Noleto
- Departamento de Ciências Biológicas, Universidade Estadual do Paraná, União da Vitória, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Débora Diniz
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, Brazil
| | | | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil.,Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
14
|
da Silva M, Matoso DA, Artoni RF, Feldberg E. Karyotypic Diversity and Evolutionary Trends in Neotropical Electric Fish of the Genus Gymnotus (Gymnotiformes: Gymnotidae). Zebrafish 2019; 16:308-320. [PMID: 31045488 DOI: 10.1089/zeb.2018.1716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Electric fish of the order Gymnotiformes are endemic to the Neotropical region, and their highest diversity is observed in the Amazon region. The family Gymnotidae, which consists of the genera Electrophorus and Gymnotus, is a natural group and is located at the base of the phylogeny of the order. Gymnotus is a widely distributed and specious genus with high karyotypic diversity, especially concerning to the diploid number and the locations of repetitive sequences. Our karyotyping results in five species of the family Gymnotidae (Gymnotus ucamara, Gymnotus cf. stenoleucus, Gymnotus cf. pedanopterus, Gymnotus mamiraua, and Gymnotus carapo "Maranhão") corroborate the proposal of plasticity of the diploid number in this group. Moreover, in this study, we propose that the 5S ribosomal DNA (rDNA) sequences were species-specific markers that act as a potential biogeographical marker for the genus. Besides, the sequence's location, particularly in G. mamiraua from Central Amazon, shows a close relationship with 5S of the Gymnotus species, with 54 chromosomes, from the Paraná-Paraguay basin in the Center-South of Brazil. Considering that the ancestral diploid number for Gymnotidae is 52 chromosomes, we also suggest that the trend in the family is toward a decrease in the chromosome number. However, the carapo clade stands out in this regard, with an increase and a decrease in chromosome number; this pattern may be reinforced with the ecologic behaviors and the geodispersal patterns of this clade.
Collapse
Affiliation(s)
- Maelin da Silva
- 1 Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Daniele Aparecida Matoso
- 2 Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Roberto Ferreira Artoni
- 1 Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Eliana Feldberg
- 3 Programa de Pós Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
15
|
García-Angulo A, Merlo MA, Portela-Bens S, Rodríguez ME, García E, Al-Rikabi A, Liehr T, Rebordinos L. Evidence for a Robertsonian fusion in Solea senegalensis (Kaup, 1858) revealed by zoo-FISH and comparative genome analysis. BMC Genomics 2018; 19:818. [PMID: 30428854 PMCID: PMC6236887 DOI: 10.1186/s12864-018-5216-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022] Open
Abstract
Background Solea senegalensis (Kaup, 1858) is a commercially important flatfish species, belonging to the Pleuronectiformes order. The taxonomy of this group has long been controversial, and the karyotype of the order presents a high degree of variability in diploid number, derived from chromosomal rearrangements such as Robertsonian fusions. Previously it has been proposed that the large metacentric chromosome of S. senegalensis arises from this kind of chromosome rearrangement and that this is a proto-sex chromosome. Results In this work, the Robertsonian origin of the large metacentric chromosome of S. senegalensis has been tested by the Zoo-FISH technique applied to two species of the Soleidae family (Dicologlossa cuneata and Dagetichthys lusitanica), and by comparative genome analysis with Cynoglossus semilaevis. From the karyotypic analysis we were able to determine a chromosome complement comprising 2n = 50 (FN = 54) in D. cuneata and 2n = 42 (FN = 50) in D. lusitanica. The large metacentric painting probe gave consistent signals in four acrocentric chromosomes of the two Soleidae species; and the genome analysis proved a common origin with four chromosome pairs of C. semilaevis. As a result of the genomic analysis, up to 61 genes were annotated within the thirteen Bacterial Artificial Chromosome clones analysed. Conclusions These results confirm that the large metacentric chromosome of S. senegalensis originated from a Robertsonian fusion and provide new data about the chromosome evolution of S. senegalensis in particular, and of Pleuronectiformes in general. Electronic supplementary material The online version of this article (10.1186/s12864-018-5216-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aglaya García-Angulo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Manuel A Merlo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Silvia Portela-Bens
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - María E Rodríguez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Emilio García
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Ahmed Al-Rikabi
- Institut für Humangenetik, Universitätsklinikum Jena, 07743, Jena, Germany
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, 07743, Jena, Germany
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain.
| |
Collapse
|
16
|
Hatanaka T, de Oliveira EA, Ráb P, Yano CF, Bertollo LAC, Ezaz T, Jegede OOI, Liehr T, Olaleye VF, de Bello Cioffi M. First chromosomal analysis in Gymnarchus niloticus (Gymnarchidae: Osteoglossiformes): insights into the karyotype evolution of this ancient fish order. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Ezequiel A de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- Secretaria de Estado de Educação de Mato Grosso – SEDUC-MT, Cuiabá, MT, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Cassia F Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, Canberra, ACT, Australia
| | | | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Jena, Germany
| | - Victor F Olaleye
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
17
|
Utsunomia R, Melo S, Scacchetti PC, Oliveira C, Machado MDA, Pieczarka JC, Nagamachi CY, Foresti F. Particular Chromosomal Distribution of Microsatellites in Five Species of the Genus Gymnotus (Teleostei, Gymnotiformes). Zebrafish 2018; 15:398-403. [PMID: 29927722 DOI: 10.1089/zeb.2018.1570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microsatellites show great abundance in eukaryotic genomes, although distinct chromosomal distribution patterns might be observed, from small dispersed signals to strong clustered motifs. In Neotropical fishes, the chromosome mapping of distinct microsatellites was employed several times to uncover the origin and evolution of sex and supernumerary chromosomes, whereas a detailed comparative analysis considering different motifs at the chromosomal level is scarce. Here, we report the chromosomal location of several simple sequence repeats (SSRs) in distinct electric knife fishes showing variable diploid chromosome numbers to unveil the structural organization of several microsatellite motifs in distinct Gymnotus species. Our results showed that some SSRs are scattered throughout the genomes, whereas others are particularly clustered displaying intense genomic compartmentalization. Interestingly, the motifs CA, GA, and GAG exhibited a band-like pattern of hybridization, useful for the identification of homologous chromosomes. Finally, the colocalization of SSRs with multigene families is probably related to the association of microsatellites with gene spacers in this case.
Collapse
Affiliation(s)
- Ricardo Utsunomia
- 1 Laboratório de Biologia e Genética de Peixes, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University , Botucatu, SP, Brazil
| | - Silvana Melo
- 1 Laboratório de Biologia e Genética de Peixes, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University , Botucatu, SP, Brazil
| | - Priscilla Cardim Scacchetti
- 1 Laboratório de Biologia e Genética de Peixes, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University , Botucatu, SP, Brazil
| | - Claudio Oliveira
- 1 Laboratório de Biologia e Genética de Peixes, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University , Botucatu, SP, Brazil
| | - Milla de Andrade Machado
- 2 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, PA, Brazil
| | - Julio Cesar Pieczarka
- 2 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, PA, Brazil
| | - Cleusa Yoshiko Nagamachi
- 2 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, PA, Brazil
| | - Fausto Foresti
- 1 Laboratório de Biologia e Genética de Peixes, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University , Botucatu, SP, Brazil
| |
Collapse
|
18
|
Piscor D, Fernandes CA, Parise-Maltempi PP. Conserved number of U2 snDNA sites in Piabina argentea, Piabarchus stramineus and two Bryconamericus species (Characidae, Stevardiinae). NEOTROPICAL ICHTHYOLOGY 2018. [DOI: 10.1590/1982-0224-20170066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT The chromosomal location of 5S rRNA and U2 snRNA genes of Piabina argentea, Piabarchus stramineus and two Bryconamericus species from two different Brazilian river basins were investigated, in order to contribute to the understanding of evolutionary characteristics of these repetitive DNAs in the subfamily Stevardiinae. The diploid chromosome number was 2n = 52 for Bryconamericus cf. iheringii, Bryconamericus turiuba, Piabarchus stramineus and Piabina argentea. The 5S rDNA clusters were located on one chromosome pair in P. stramineus and B. cf. iheringii, and on two pairs in B. turiuba and P. argentea. The U2 snDNA clusters were located on the one pair in all species. Two-color FISH experiments showed that the co-localization between 5S rDNA and U2 snDNA in P. stramineus can represent a marker for this species. Thus, the present study demonstrated that the number of U2 snDNA clusters observed for the four species was conserved, but particular characteristics can be found in the genome of each species.
Collapse
Affiliation(s)
- Diovani Piscor
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | | | | |
Collapse
|
19
|
Chromosomal locations of U2 snDNA clusters in Megaleporinus, Leporinus and Schizodon (Characiformes: Anostomidae). Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0031-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Uncovering the molecular organization of unusual highly scattered 5S rDNA: The case of Chariesterus armatus (Heteroptera). Gene 2018; 646:153-158. [DOI: 10.1016/j.gene.2017.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
|
21
|
Machado MDA, Pieczarka JC, Silva FHR, O'Brien PCM, Ferguson-Smith MA, Nagamachi CY. Extensive Karyotype Reorganization in the Fish Gymnotus arapaima (Gymnotiformes, Gymnotidae) Highlighted by Zoo-FISH Analysis. Front Genet 2018; 9:8. [PMID: 29434621 PMCID: PMC5790778 DOI: 10.3389/fgene.2018.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023] Open
Abstract
The genus Gymnotus (Gymnotiformes) contains over 40 species of freshwater electric fishes exhibiting a wide distribution throughout Central and South America, and being particularly prevalent in the Amazon basin. Cytogenetics has been an important tool in the cytotaxonomy and elucidation of evolutionary processes in this genus, including the unraveling the variety of diploid chromosome number (2n = from 34 to 54), the high karyotype diversity among species with a shared diploid number, different sex chromosome systems, and variation in the distribution of several Repetitive DNAs and colocation and association between those sequences. Recently whole chromosome painting (WCP) has been used for tracking the chromosomal evolution of the genus, showing highly reorganized karyotypes and the conserved synteny of the NOR bearing par within the clade G. carapo. In this study, painting probes derived from the chromosomes of G. carapo (GCA, 2n = 42, 30 m/sm + 12 st/a) were hybridized to the mitotic metaphases of G. arapaima (GAR, 2n = 44, 24 m/sm + 20 st/a). Our results uncovered chromosomal rearrangements and a high number of repetitive DNA regions. From the 12 chromosome pairs of G. carapo that can be individually differentiated (GCA1-3, 6, 7, 9, 14, 16, and 18-21), six pairs (GCA 1, 9, 14, 18, 20, 21) show conserved homology with GAR, five pairs (GCA 1, 9, 14, 20, 21) are also shared with cryptic species G. carapo 2n = 40 (34 m/sm + 6 st/a) and only the NOR bearing pair (GCA 20) is shared with G. capanema (GCP 2n = 34, 20 m/sm + 14 st/a). The remaining chromosomes are reorganized in the karyotype of GAR. Despite the close phylogenetic relationships of these species, our chromosome painting studies demonstrate an extensive reorganization of their karyotypes.
Collapse
Affiliation(s)
- Milla de Andrade Machado
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| | - Julio C Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| | - Fernando H R Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| | - Patricia C M O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Cleusa Y Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| |
Collapse
|
22
|
Getlekha N, Cioffi MDB, Maneechot N, Bertollo LAC, Supiwong W, Tanomtong A, Molina WF. Contrasting Evolutionary Paths Among Indo-Pacific Pomacentrus Species Promoted by Extensive Pericentric Inversions and Genome Organization of Repetitive Sequences. Zebrafish 2017; 15:45-54. [PMID: 29023226 DOI: 10.1089/zeb.2017.1484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pomacentrus (damselfishes) is one of the most characteristic groups of fishes in the Indo-Pacific coral reef. Its 77 described species exhibit a complex taxonomy with cryptic lineages across their extensive distribution. Periods of evolutionary divergences between them are very variable, and the cytogenetic events that followed their evolutionary diversification are largely unknown. In this respect, analyses of chromosomal divergence, within a phylogenetic perspective, are particularly informative regarding karyoevolutionary trends. As such, we conducted conventional cytogenetic and cytogenomic analyses in four Pomacentrus species (Pomacentrus similis, Pomacentrus auriventris, Pomacentrus moluccensis, and Pomacentrus cuneatus), through the mapping of repetitive DNA classes and transposable elements, including 18S rDNA, 5S rDNA, (CA)15, (GA)15, (CAA)10, Rex6, and U2 snDNA as markers. P. auriventris and P. similis, belonging to the Pomacentrus coelestis complex, have indistinguishable karyotypes (2n = 48; NF = 48), with a peculiar syntenic organization of ribosomal genes. On the other hand, P. moluccensis and P. cuneatus, belonging to another clade, exhibit very different karyotypes (2n = 48, NF = 86 and 92, respectively), with a large number of bi-armed chromosomes, where multiple pericentric inversions played a significant role in their karyotype organization. In this sense, different chromosomal pathways followed the phyletic diversification in the Pomacentrus genus, making possible the characterization of two well-contrasting species groups regarding their karyotype features. Despite this, pericentric inversions act as an effective postzygotic barrier in many organisms, which appear to be also the case for P. moluccensis and P. cuneatus; the extensive chromosomal similarities in the two species of P. coelestis complex suggest minor participation of chromosomal postzygotic barriers in the phyletic diversification of these species.
Collapse
Affiliation(s)
- Nuntaporn Getlekha
- 1 Department of Biology, Faculty of Science, Khon Kaen University , Khon Kaen, Thailand
| | - Marcelo de Bello Cioffi
- 2 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Paulo, Brazil
| | - Nuntiya Maneechot
- 1 Department of Biology, Faculty of Science, Khon Kaen University , Khon Kaen, Thailand
| | | | - Weerayuth Supiwong
- 3 Department of Fisheries, Faculty of Applied Science and Engineering, Khon Kaen University , Khon Kaen, Thailand
| | - Alongklod Tanomtong
- 1 Department of Biology, Faculty of Science, Khon Kaen University , Khon Kaen, Thailand .,4 Toxic Substances in Livestock and Aquatic Animals Research Group, KhonKaen University , Khon Kaen, Thailand
| | - Wagner Franco Molina
- 5 Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte , Natal, Brazil
| |
Collapse
|
23
|
Araya-Jaime C, Mateussi NTB, Utsunomia R, Costa-Silva GJ, Oliveira C, Foresti F. ZZ/Z0: The New System of Sex Chromosomes in Eigenmannia aff. trilineata (Teleostei: Gymnotiformes: Sternopygidae) Characterized by Molecular Cytogenetics and DNA Barcoding. Zebrafish 2017; 14:464-470. [DOI: 10.1089/zeb.2017.1422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Cristian Araya-Jaime
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Nadayca T. Bonani Mateussi
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Ricardo Utsunomia
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Guilherme J. Costa-Silva
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Claudio Oliveira
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Fausto Foresti
- Department of Morphology, Institute of Bioscience, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
24
|
Araya-Jaime C, Lam N, Pinto IV, Méndez MA, Iturra P. Chromosomal organization of four classes of repetitive DNA sequences in killifish Orestias ascotanensis Parenti, 1984 (Cyprinodontiformes, Cyprinodontidae). COMPARATIVE CYTOGENETICS 2017; 11:463-475. [PMID: 29093798 PMCID: PMC5646654 DOI: 10.3897/compcytogen.v11i3.11729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/14/2017] [Indexed: 06/01/2023]
Abstract
Orestias Valenciennes, 1839 is a genus of freshwater fish endemic to the South American Altiplano. Cytogenetic studies of these species have focused on conventional karyotyping. The aim of this study was to use classical and molecular cytogenetic methods to identify the constitutive heterochromatin distribution and chromosome organization of four classes of repetitive DNA sequences (histone H3 DNA, U2 snRNA, 18S rDNA and 5S rDNA) in the chromosomes of O. ascotanensis Parenti, 1984, an endemic species restricted to the Salar de Ascotán in the Chilean Altiplano. All individuals analyzed had a diploid number of 48 chromosomes. C-banding identified constitutive heterochromatin mainly in the pericentromeric region of most chromosomes, especially a GC-rich heterochromatic block of the short arm of pair 3. FISH assay with an 18S probe confirmed the location of the NOR in pair 3 and revealed that the minor rDNA cluster occurs interstitially on the long arm of pair 2. Dual FISH identified a single block of U2 snDNA sequences in the pericentromeric regions of a subtelocentric chromosome pair, while histone H3 sites were observed as small signals scattered in throughout the all chromosomes. This work represents the first effort to document the physical organization of the repetitive fraction of the Orestias genome. These data will improve our understanding of the chromosomal evolution of a genus facing serious conservation problems.
Collapse
Affiliation(s)
- Cristian Araya-Jaime
- Facultad de Medicina, Universidad de Chile, ICBM, Programa de Genética Humana, Casilla 70061, Santiago, Chile
| | - Natalia Lam
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile. Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Irma Vila Pinto
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, CP 780-0024, Santiago, Chile
| | - Marco A. Méndez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, CP 780-0024, Santiago, Chile
| | - Patricia Iturra
- Facultad de Medicina, Universidad de Chile, ICBM, Programa de Genética Humana, Casilla 70061, Santiago, Chile
| |
Collapse
|
25
|
Machado MDA, Cardoso AL, Milhomem-Paixão SSR, Pieczarka JC, Nagamachi CY. Gymnotus coatesi (Gymnotiformes): A Case of Colocation of Multiple Sites of 18S rDNA with Telomeric Sequences. Zebrafish 2017; 14:459-463. [PMID: 28654369 DOI: 10.1089/zeb.2017.1435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gymnotus coatesi is a small and rare species of banded knife fish that was originally described by LaMonte in 1935, found along the main stretch of the Amazon River. There is no described cytogenetic data on this species. We analyzed the karyotype of five specimens of G. coatesi collected from Cururutuia Stream in Bragança, Pará, Brazil. The obtained diploid number is 50 and the karyotypic formula is 24 m/sm +26 st/a. The constitutive heterochromatin is DAPI positive and distributed mainly in the centromeric and pericentromeric regions of the chromosomes. Ag-nucleolus organizer regions staining showed nine active sites. The 5S rDNA probe hybridized chromosome pair 17 in the interstitial part of the long arm. Fluorescence in situ hybridization (FISH) with telomeric probes revealed signals only at terminal regions of the chromosomes. The 18S rDNA probe hybridized to 21 sites, and these signals colocalized with the telomeric sequences. This relatively high number of 18S rDNA sites may reflect gene duplication mediated by transposable elements. These results indicate that although the diploid number of G. coatesi is within the range previously observed for other members of the genus, various karyotypic characteristics distinguish G. coatesi from the other species of the genus and members of the Gymnotiform order.
Collapse
Affiliation(s)
- Milla de Andrade Machado
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Pará, Brazil
| | - Adauto Lima Cardoso
- 2 Laboratório Genômica Integrativa, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho , Botucatu, São Paulo, Brazil
| | | | - Julio Cesar Pieczarka
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Pará, Brazil
| |
Collapse
|
26
|
Santos ARD, Usso MC, Gouveia JG, Araya-Jaime C, Frantine-Silva W, Giuliano-Caetano L, Foresti F, Dias AL. Chromosomal Mapping of Repetitive DNA Sequences in the Genus Bryconamericus (Characidae) and DNA Barcoding to Differentiate Populations. Zebrafish 2017; 14:261-271. [PMID: 28355106 DOI: 10.1089/zeb.2016.1380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mapping of repetitive DNA sites by fluorescence in situ hybridization has been widely used for karyotype studies in different species of fish, especially when dealing with related species or even genera presenting high chromosome variability. This study analyzed three populations of Bryconamericus, with diploid number preserved, but with different karyotype formulae. Bryconamericus ecai, from the Forquetinha river/RS, presented three new cytotypes, increasing the number of karyotype forms to seven in this population. Other two populations of Bryconamericus sp. from the Vermelho stream/PR and Cambuta river/PR exhibited interpopulation variation. The chromosome mapping of rDNA sites revealed unique markings among the three populations, showing inter- and intrapopulation variability located in the terminal region. The molecular analysis using DNA barcoding complementing the cytogenetic analysis also showed differentiation among the three populations. The U2 small nuclear DNA repetitive sequence exhibited conserved features, being located in the interstitial region of a single chromosome pair. This is the first report on its occurrence in the genus Bryconamericus. Data obtained revealed a karyotype variability already assigned to the genus, along with polymorphism of ribosomal sites, demonstrating that this group of fish can be undergoing a divergent evolutionary process, constituting a substantive model for studies of chromosomal evolution.
Collapse
Affiliation(s)
- Angélica Rossotti Dos Santos
- 1 Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| | - Mariana Campaner Usso
- 1 Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| | - Juceli Gonzalez Gouveia
- 1 Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| | - Cristian Araya-Jaime
- 2 Laboratório de Citogenética de Vertebrados, ICBM Facultad de Medicina, Universidad de Chile , Santiago, Chile .,3 Laboratório de Genética e Ecologia Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil .,4 Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista , Botucatu, Brazil
| | - Wilson Frantine-Silva
- 3 Laboratório de Genética e Ecologia Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| | - Lucia Giuliano-Caetano
- 1 Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| | - Fausto Foresti
- 4 Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista , Botucatu, Brazil
| | - Ana Lúcia Dias
- 1 Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| |
Collapse
|
27
|
Castillo ERD, Taffarel A, Maronna MM, Cigliano MM, Palacios-Gimenez OM, Cabral-de-Mello DC, Martí DA. Phylogeny and chromosomal diversification in the Dichroplus elongatus species group (Orthoptera, Melanoplinae). PLoS One 2017; 12:e0172352. [PMID: 28245223 PMCID: PMC5330476 DOI: 10.1371/journal.pone.0172352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/04/2017] [Indexed: 11/19/2022] Open
Abstract
In an attempt to track the chromosomal differentiation in the Dichroplus elongatus species group, we analyzed the karyotypes of four species with classical cytogenetic and mapping several multigene families through fluorescent in situ hybridization (FISH). We improved the taxon sampling of the D. elongatus species group adding new molecular data to infer the phylogeny of the genus and reconstruct the karyotype evolution. Our molecular analyses recovered a fully resolved tree with no evidence for the monophyly of Dichroplus. However, we recovered several stable clades within the genus, including the D. elongatus species group, under the different strategies of tree analyses (Maximum Parsimony and Maximum Likelihood). The chromosomal data revealed minor variation in the D. elongatus species group's karyotypes caused by chromosome rearrangements compared to the phylogenetically related D. maculipennis species group. The karyotypes of D. intermedius and D. exilis described herein showed the standard characteristics found in most Dichroplini, 2n = 23/24, X0♂ XX♀, Fundamental number (FN) = 23/24. However, we noticed two established pericentric inversions in D. intermedius karyotype, raising the FN to 27♂/28♀. A strong variation in the heterochromatic blocks distribution was evidenced at interespecific level. The multigene families' mapping revealed significant variation, mainly in rDNA clusters. These variations are probably caused by micro chromosomal changes, such as movement of transposable elements (TEs) and ectopic recombination. These observations suggest a high genomic dynamism for these repetitive DNA sequences in related species. The reconstruction of the chromosome character "variation in the FN" posits the FN = 23/24 as the ancestral state, and it is hypothesized that variations due to pericentric inversions has arisen independently three times in the evolutionary history of Dichroplus. One of these independent events occurred in the D. elongatus species group, where D. intermedius is the unique case with the highest FN described in the tribe Dichroplini.
Collapse
Affiliation(s)
- Elio R. D. Castillo
- Laboratorio de Genética Evolutiva. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN, Félix de Azara 1552, Piso 6°. Posadas, Misiones, Argentina
| | - Alberto Taffarel
- Laboratorio de Genética Evolutiva. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN, Félix de Azara 1552, Piso 6°. Posadas, Misiones, Argentina
- Comité Ejecutivo de Desarrollo e Innovación Tecnológica (CEDIT). Posadas, Misiones, Argentina
| | - Maximiliano M. Maronna
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, São Paulo, Brazil
| | - María Marta Cigliano
- Museo de La Plata, CEPAVE, CCT La Plata, CONICET-UNLP. La Plata, Buenos Aires, Argentina
| | - Octavio M. Palacios-Gimenez
- UNESP—Universidade Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, Rio Claro/SP, Brazil
| | - Diogo C. Cabral-de-Mello
- UNESP—Universidade Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, Rio Claro/SP, Brazil
| | - Dardo A. Martí
- Laboratorio de Genética Evolutiva. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN, Félix de Azara 1552, Piso 6°. Posadas, Misiones, Argentina
| |
Collapse
|
28
|
Yano CF, Bertollo LAC, Rebordinos L, Merlo MA, Liehr T, Portela-Bens S, Cioffi MDB. Evolutionary Dynamics of rDNAs and U2 Small Nuclear DNAs in Triportheus (Characiformes, Triportheidae): High Variability and Particular Syntenic Organization. Zebrafish 2017; 14:146-154. [PMID: 28051362 DOI: 10.1089/zeb.2016.1351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multigene families correspond to a group of genes tandemly repeated, showing enormous diversity in both number of units and genomic organization. In fishes, unlike rDNAs that have been well explored in cytogenetic studies, U2 small nuclear RNA (snRNA) genes are poorly investigated concerning their chromosomal localization. All Triportheus species (Characiformes, Triportheidae) studied so far carry a ZZ/ZW sex chromosomes system, where the W chromosome contains a huge 18S rDNA cistron. In some species the syntenic organization of rDNAs on autosomes was also verified. To explore this particular organization, we performed three-color-fluorescence in situ hybridization using 5S, 18S rDNA, and U2 snRNA genes as probes in eight Triportheus species. This work represents the first one analyzing the chromosomal distribution of U2 snRNA genes in genomes of Triportheidae. The variability in number of rDNA clusters, and the divergent syntenies for these three multigene families, put in evidence their evolutionary dynamism, revealing a much more complex organization of these genes than previously supposed for closely related species. Our study also provides additional data on the accumulation of repetitive sequences in the sex-specific chromosome. Besides, the chromosomal organization of U2 snDNAs among fish species is also reviewed.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Carlos, Brazil
| | | | - Laureana Rebordinos
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Manuel Alejandro Merlo
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Thomas Liehr
- 3 Jena University Hospital, Friedrich Schiller University , Institute of Human Genetics, Jena, Germany
| | - Silvia Portela-Bens
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Marcelo de Bello Cioffi
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Carlos, Brazil
| |
Collapse
|
29
|
Piscor D, Centofante L, Parise-Maltempi PP. Highly Similar Morphologies Between Chromosomes Bearing U2 snRNA Gene Clusters in the Group Astyanax Baird and Girard, 1854 (Characiformes, Characidae): An Evolutionary Approach in Species with 2n = 36, 46, 48, and 50. Zebrafish 2016; 13:565-570. [DOI: 10.1089/zeb.2016.1292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Diovani Piscor
- Laboratório de Citogenética, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rio Claro, Brazil
| | - Liano Centofante
- Laboratório de Genética Animal, Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Laboratório de Citogenética, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rio Claro, Brazil
| |
Collapse
|
30
|
da Silva M, Barbosa P, Artoni RF, Feldberg E. Evolutionary Dynamics of 5S rDNA and Recurrent Association of Transposable Elements in Electric Fish of the Family Gymnotidae (Gymnotiformes): The Case of Gymnotus mamiraua. Cytogenet Genome Res 2016; 149:297-303. [PMID: 27750255 DOI: 10.1159/000449431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Gymnotidae is a family of electric fish endemic to the Neotropics consisting of 2 genera: Electrophorus and Gymnotus. The genus Gymnotus is widely distributed and is found in all of the major Brazilian river systems. Physical and molecular mapping data for the ribosomal DNA (rDNA) in this genus are still scarce, with its chromosomal location known in only 11 species. As other species of Gymnotus with 2n = 54 chromosomes from the Paraná-Paraguay basin, G. mamiraua was found to have a large number of 5S rDNA sites. Isolation and cloning of the 5S rDNA sequences from G. mamiraua identified a fragment of a transposable element similar to the Tc1/mariner transposon associated with a non-transcribed spacer. Double fluorescence in situ hybridization analysis of this element and the 5S rDNA showed that they were colocalized on several chromosomes, in addition to acting as nonsyntenic markers on others. Our data show the association between these sequences and suggest that the Tc1 retrotransposon may be the agent that drives the spread of these 5S rDNA-like sequences in the G. mamiraua genome.
Collapse
Affiliation(s)
- Maelin da Silva
- Programa de Pós Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | | | | |
Collapse
|
31
|
Getlekha N, Cioffi MDB, Yano CF, Maneechot N, Bertollo LAC, Supiwong W, Tanomtong A, Molina WF. Chromosome mapping of repetitive DNAs in sergeant major fishes (Abudefdufinae, Pomacentridae): a general view on the chromosomal conservatism of the genus. Genetica 2016; 144:567-576. [PMID: 27660254 DOI: 10.1007/s10709-016-9925-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/17/2016] [Indexed: 12/01/2022]
Abstract
Species of the Abudefduf genus (sergeant-majors) are widely distributed in the Indian, Pacific and Atlantic oceans, with large schools inhabiting rocky coastal regions and coral reefs. This genus consists of twenty recognized species are of generalist habit, showing typical characteristics of colonizers. Some populations maintain gene flow between large oceanic areas, a condition that may influence their cytogenetic features. A number of species have been shown to be invaders and able to hybridize with local species. However, cytogenetic data in this genus are restricted to few species. In this way, the present study includes the chromosomal investigation, using conventional (Giemsa staining, Ag-NOR and C-banding) and molecular (in situ mapping of six different repetitive DNA classes) approaches in four Abudefduf species from different oceanic regions (A. bengalensis and A. sexfasciatus from the Indo-Pacific, A. vaigiensis from the Indian and A. saxatilis from the Atlantic oceans, respectively), to investigate the evolutionary events associated with the chromosomal diversification in this group. All species share a similar karyotype (2n = 48; NF = 52), except A. sexfasciatus (2n = 48; NF = 50), which possesses a characteristic pericentric inversion in the NOR-bearing chromosomal pair. Mapping of repetitive sequences suggests a chromosomal conservatism in this genus. The high karyotypic similarity between allopatric species of Abudefduf may be related to the success of natural viable hybrids among species with recent secondary contact.
Collapse
Affiliation(s)
- Nuntaporn Getlekha
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen, Thailand
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Nuntiya Maneechot
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen, Thailand
| | | | - Weerayuth Supiwong
- Department of Fisheries, Faculty of Applied Science and Engineering, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai, Thailand
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen, Thailand.,Toxic Substances in Livestock and Aquatic Animals Research Group, Khon Kaen University, Muang, Khon Kaen, 40002, Thailand
| | - Wagner Franco Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
32
|
Baumgärtner L, Paiz LM, Margarido VP, Portela-Castro AL. Cytogenetics of the Thorny Catfish Trachydoras paraguayensis (Eigenmann & Ward, 1907), (Siluriformes, Doradidae): Evidence of Pericentric Inversions and Chromosomal Fusion. Cytogenet Genome Res 2016; 149:201-206. [DOI: 10.1159/000448126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
Abstract
The karyotype and chromosomal characteristics of Trachydorasparaguayensis, a representative of the South American catfish family Doradidae, were analyzed by conventional (Giemsa staining, silver staining, C-banding) and molecular (FISH with rDNA and telomeric probes) cytogenetic techniques. The diploid chromosome number was 2n = 56, with 36 metacentric, 16 submetacentric, and 4 subtelocentric chromosomes in both sexes; however, a remarkable heteromorphism in pair 22 (submetacentric and metacentric elements) was detected in 6 individuals. Compared to other representatives of Doradidae which mostly have 58 chromosomes, the karyotype of T. paraguayensis suggests a reduction in 2n due to chromosomal fusion, as could be deduced from the presence of an interstitial telomere sequence in the submetacentric pair 19. Pale heterochromatic blocks were present in the terminal regions of some chromosomes, very similar to other species of Doradidae. The interstitial position of the NORs observed in the karyotype of T. paraguayensis differs from those reported for most Doradidae species, indicating that it is a derived character. FISH with 5S rDNA revealed 2 interstitial fluorescent signals in the submetacentric pair 22, and the polymorphism of these sites likely resulted from a pericentric inversion.
Collapse
|
33
|
Chromosomal evolutionary dynamics of four multigene families in Coreidae and Pentatomidae (Heteroptera) true bugs. Mol Genet Genomics 2016; 291:1919-25. [DOI: 10.1007/s00438-016-1229-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
|
34
|
Portela-Bens S, Merlo MA, Rodríguez ME, Cross I, Manchado M, Kosyakova N, Liehr T, Rebordinos L. Integrated gene mapping and synteny studies give insights into the evolution of a sex proto-chromosome in Solea senegalensis. Chromosoma 2016; 126:261-277. [PMID: 27080536 DOI: 10.1007/s00412-016-0589-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 11/27/2022]
Abstract
The evolution of genes related to sex and reproduction in fish shows high plasticity and, to date, the sex determination system has only been identified in a few species. Solea senegalensis has 42 chromosomes and an XX/XY chromosome system for sex determination, while related species show the ZZ/ZW system. Next-generation sequencing (NGS), multi-color fluorescence in situ hybridization (mFISH) techniques, and bioinformatics analysis have been carried out, with the objective of revealing new information about sex determination and reproduction in S. senegalensis. To that end, several bacterial artificial chromosome (BAC) clones that contain candidate genes involved in such processes (dmrt1, dmrt2, dmrt3, dmrt4, sox3, sox6, sox8, sox9, lh, cyp19a1a, amh, vasa, aqp3, and nanos3) were analyzed and compared with the same region in other related species. Synteny studies showed that the co-localization of dmrt1-dmrt2-drmt3 in the largest metacentric chromosome of S. senegalensis is coincident with that found in the Z chromosome of Cynoglossus semilaevis, which would potentially make this a sex proto-chromosome. Phylogenetic studies show the close proximity of S. senegalensis to Oryzias latipes, a species with an XX/XY system and a sex master gene. Comparative mapping provides evidence of the preferential association of these candidate genes in particular chromosome pairs. By using the NGS and mFISH techniques, it has been possible to obtain an integrated genetic map, which shows that 15 out of 21 chromosome pairs of S. senegalensis have at least one BAC clone. This result is important for distinguishing those chromosome pairs of S. senegalensis that are similar in shape and size. The mFISH analysis shows the following co-localizations in the same chromosomes: dmrt1-dmrt2-dmrt3, dmrt4-sox9-thrb, aqp3-sox8, cyp19a1a-fshb, igsf9b-sox3, and lysg-sox6.
Collapse
Affiliation(s)
- Silvia Portela-Bens
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Manuel Alejandro Merlo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - María Esther Rodríguez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Ismael Cross
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain
| | - Manuel Manchado
- Centro IFAPA "El Toruño", 11500, Puerto de Santa María, Cádiz, Spain
| | - Nadezda Kosyakova
- Institut für Humangenetik, Universitätsklinikum Jena, 07743, Jena, Germany
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, 07743, Jena, Germany
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Cádiz, Spain.
| |
Collapse
|
35
|
García-Souto D, Troncoso T, Pérez M, Pasantes JJ. Molecular Cytogenetic Analysis of the European Hake Merluccius merluccius (Merlucciidae, Gadiformes): U1 and U2 snRNA Gene Clusters Map to the Same Location. PLoS One 2015; 10:e0146150. [PMID: 26716701 PMCID: PMC4696792 DOI: 10.1371/journal.pone.0146150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/13/2015] [Indexed: 01/25/2023] Open
Abstract
The European hake (Merluccius merluccius) is a highly valuable and intensely fished species in which a long-term alive stock has been established in captivity for aquaculture purposes. Due to their huge economic importance, genetic studies on hakes were mostly focused on phylogenetic and phylogeographic aspects; however chromosome numbers are still not described for any of the fifteen species in the genus Merluccius. In this work we report a chromosome number of 2n = 42 and a karyotype composed of three meta/submetacentric and 18 subtelo/telocentric chromosome pairs. Telomeric sequences appear exclusively at both ends of every single chromosome. Concerning rRNA genes, this species show a single 45S rDNA cluster at an intercalary location on the long arm of subtelocentric chromosome pair 12; the single 5S rDNA cluster is also intercalary to the long arm of chromosome pair 4. While U2 snRNA gene clusters map to a single subcentromeric position on chromosome pair 13, U1 snRNA gene clusters seem to appear on almost all chromosome pairs, but showing bigger clusters on pairs 5, 13, 16, 17 and 19. The brightest signals on pair 13 are coincident with the single U2 snRNA gene cluster signals. Therefore, the use of these probes allows the unequivocal identification of at least 7 of the chromosome pairs that compose the karyotype of Merluccius merluccius thus opening the way to integrate molecular genetics and cytological data on the study of the genome of this important species.
Collapse
Affiliation(s)
- Daniel García-Souto
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
| | - Tomás Troncoso
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
- Grupo de Acuicultura Marina, Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain
| | - Montse Pérez
- Grupo de Acuicultura Marina, Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain
| | - Juan José Pasantes
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
- * E-mail:
| |
Collapse
|
36
|
Palacios-Gimenez OM, Carvalho CR, Ferrari Soares FA, Cabral-de-Mello DC. Contrasting the Chromosomal Organization of Repetitive DNAs in Two Gryllidae Crickets with Highly Divergent Karyotypes. PLoS One 2015; 10:e0143540. [PMID: 26630487 PMCID: PMC4667936 DOI: 10.1371/journal.pone.0143540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
A large percentage of eukaryotic genomes consist of repetitive DNA that plays an important role in the organization, size and evolution. In the case of crickets, chromosomal variability has been found using classical cytogenetics, but almost no information concerning the organization of their repetitive DNAs is available. To better understand the chromosomal organization and diversification of repetitive DNAs in crickets, we studied the chromosomes of two Gryllidae species with highly divergent karyotypes, i.e., 2n(♂) = 29,X0 (Gryllus assimilis) and 2n = 9, neo-X1X2Y (Eneoptera surinamensis). The analyses were performed using classical cytogenetic techniques, repetitive DNA mapping and genome-size estimation. Conserved characteristics were observed, such as the occurrence of a small number of clusters of rDNAs and U snDNAs, in contrast to the multiple clusters/dispersal of the H3 histone genes. The positions of U2 snDNA and 18S rDNA are also conserved, being intermingled within the largest autosome. The distribution and base-pair composition of the heterochromatin and repetitive DNA pools of these organisms differed, suggesting reorganization. Although the microsatellite arrays had a similar distribution pattern, being dispersed along entire chromosomes, as has been observed in some grasshopper species, a band-like pattern was also observed in the E. surinamensis chromosomes, putatively due to their amplification and clustering. In addition to these differences, the genome of E. surinamensis is approximately 2.5 times larger than that of G. assimilis, which we hypothesize is due to the amplification of repetitive DNAs. Finally, we discuss the possible involvement of repetitive DNAs in the differentiation of the neo-sex chromosomes of E. surinamensis, as has been reported in other eukaryotic groups. This study provided an opportunity to explore the evolutionary dynamics of repetitive DNAs in two non-model species and will contribute to the understanding of chromosomal evolution in a group about which little chromosomal and genomic information is known.
Collapse
Affiliation(s)
| | - Carlos Roberto Carvalho
- UFV–Univ. Federal de Viçosa, Centro de Ciências Biológicas, Departamento de Biologia Geral, Viçosa, MG, Brazil
| | | | - Diogo C. Cabral-de-Mello
- UNESP—Univ. Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, Rio Claro, SP, Brazil
| |
Collapse
|
37
|
Scacchetti PC, Utsunomia R, Pansonato-Alves JC, da Costa Silva GJ, Vicari MR, Artoni RF, Oliveira C, Foresti F. Repetitive DNA Sequences and Evolution of ZZ/ZW Sex Chromosomes in Characidium (Teleostei: Characiformes). PLoS One 2015; 10:e0137231. [PMID: 26372604 PMCID: PMC4570811 DOI: 10.1371/journal.pone.0137231] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/14/2015] [Indexed: 11/18/2022] Open
Abstract
Characidium constitutes an interesting model for cytogenetic studies, since a large degree of karyotype variation has been detected in this group, like the presence/absence of sex and supernumerary chromosomes and variable distribution of repetitive sequences in different species/populations. In this study, we performed a comparative cytogenetic analysis in 13 Characidium species collected at different South American river basins in order to investigate the karyotype diversification in this group. Chromosome analyses involved the karyotype characterization, cytogenetic mapping of repetitive DNA sequences and cross-species chromosome painting using a W-specific probe obtained in a previous study from Characidium gomesi. Our results evidenced a conserved diploid chromosome number of 2n = 50, and almost all the species exhibited homeologous ZZ/ZW sex chromosomes in different stages of differentiation, except C. cf. zebra, C. tenue, C. xavante and C. stigmosum. Notably, some ZZ/ZW sex chromosomes showed 5S and/or 18S rDNA clusters, while no U2 snDNA sites could be detected in the sex chromosomes, being restricted to a single chromosome pair in almost all the analyzed species. In addition, the species Characidium sp. aff. C. vidali showed B chromosomes with an inter-individual variation of 1 to 4 supernumerary chromosomes per cell. Notably, these B chromosomes share sequences with the W-specific probe, providing insights about their origin. Results presented here further confirm the extensive karyotype diversity within Characidium in contrast with a conserved diploid chromosome number. Such chromosome differences seem to constitute a significant reproductive barrier, since several sympatric Characidium species had been described during the last few years and no interespecific hybrids were found.
Collapse
Affiliation(s)
- Priscilla Cardim Scacchetti
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
- * E-mail:
| | - Ricardo Utsunomia
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
| | - José Carlos Pansonato-Alves
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Guilherme José da Costa Silva
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa (UEPG), Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Roberto Ferreira Artoni
- Universidade Estadual de Ponta Grossa (UEPG), Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
| |
Collapse
|
38
|
Silva DMZA, Utsunomia R, Pansonato-Alves JC, Oliveira C, Foresti F. Chromosomal Mapping of Repetitive DNA Sequences in Five Species of Astyanax (Characiformes, Characidae) Reveals Independent Location of U1 and U2 snRNA Sites and Association of U1 snRNA and 5S rDNA. Cytogenet Genome Res 2015; 146:144-152. [PMID: 26329975 DOI: 10.1159/000438813] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
Astyanax is a genus of Characidae fishes currently composed of 155 valid species. Previous cytogenetic studies revealed high chromosomal diversification among them, and several studies have been performed using traditional cytogenetic techniques to investigate karyotypes and chromosomal locations of 18S and 5S rDNA genes. However, only a few studies are currently available about other repetitive sequences. Here, the chromosomal location of small nuclear RNA genes, identified as U1 and U2 snRNA clusters, was established and compared to the distribution of 5S rDNA and histone clusters in 5 Astyanax species (A. paranae, A. fasciatus, A. bockmanni, A. altiparanae, and A. jordani) using FISH. The cytogenetic mapping of U1 and U2 snRNA demonstrated a conserved pattern in the number of sites per genome independent of the location in Astyanax species. The location of the U1 snRNA gene was frequently associated with 5S rDNA sequences, indicating a possible interaction between the distinct repetitive DNA families. Finally, comparisons involving the location of U1 and U2 snRNA clusters in the chromosomes of Astyanax species revealed a very diverse pattern, suggesting that many rearrangements have occurred during the diversification process of this group.
Collapse
Affiliation(s)
- Duilio M Z A Silva
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | | | | | | | | |
Collapse
|
39
|
Sene VF, Pansonato-Alves JC, Utsunomia R, Oliveira C, Foresti F. Karyotype diversity and patterns of chromosomal evolution in Eigenmannia (Teleostei, Gymnotiformes, Sternopygidae). COMPARATIVE CYTOGENETICS 2014; 8:301-311. [PMID: 25610544 PMCID: PMC4296717 DOI: 10.3897/compcytogen.v8i4.8396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/06/2014] [Indexed: 06/01/2023]
Abstract
Conventional (Giemsa, C-banding, Ag - NORs) and molecular [5S rDNA, 18S rDNA, (TTAGGG)n] cytogenetic techniques were employed to study six species of the genus Eigenmannia Jordan & Evermann, 1896. They exhibited diploid chromosome numbers ranging from 2n=28 (Eigenmannia sp.1) to 2n=38 (Eigenmanniavirescens (Valenciennes, 1836)). The C-banding results revealed that species with the lowest 2n have less heterochromatin content and that morphologically differentiated sex chromosomes observed in two species showed distinct patterns of heterochromatin. While the X1, X2 and Y-chromosomes of Eigenmannia sp.2 showed only centromeric heterochromatin, the XY sex chromosomes of Eigenmanniavirescens possessed large heterochromatic blocks in the terminal position, particularly on the X chromosome. The nucleolus organizer regions (NORs) were located in different positions when compared to the 5S rDNA sites. Additionally, the presence of minor ribosomal gene sites on the sex chromosome pair of Eigenmanniavirescens represented a new type of the sex chromosomes in this group. The telomeric probe (TTAGGG)n hybridized to the terminal portion of all chromosomes in all species examined however, interstitial telomeric sites were found in the metacentric pair No. 2 in Eigenmannia sp.1. The analyzes confirmed some hypotheses about karyotype evolution in the genus Eigenmannia, and brought new information about the distribution of the genetic material in the chromosomes of the samples analyzed providing new insights for understanding the process differentiation in the genomes of species under study.
Collapse
Affiliation(s)
- Viviani França Sene
- Laboratório de Biologia e Genética de Peixes, Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Departamento de Morfologia, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil. CEP: 18618-970
| | - José Carlos Pansonato-Alves
- Laboratório de Biologia e Genética de Peixes, Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Departamento de Morfologia, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil. CEP: 18618-970
| | - Ricardo Utsunomia
- Laboratório de Biologia e Genética de Peixes, Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Departamento de Morfologia, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil. CEP: 18618-970
| | - Claudio Oliveira
- Laboratório de Biologia e Genética de Peixes, Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Departamento de Morfologia, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil. CEP: 18618-970
| | - Fausto Foresti
- Laboratório de Biologia e Genética de Peixes, Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Departamento de Morfologia, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil. CEP: 18618-970
| |
Collapse
|
40
|
Palacios-Gimenez OM, Cabral-de-Mello DC. Repetitive DNA chromosomal organization in the cricket Cycloptiloides americanus: a case of the unusual X1X 20 sex chromosome system in Orthoptera. Mol Genet Genomics 2014; 290:623-31. [PMID: 25373534 DOI: 10.1007/s00438-014-0947-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/23/2014] [Indexed: 01/25/2023]
Abstract
A common placement for most sex chromosomes that is involved in their evolutionary histories is the accumulation of distinct classes of repetitive DNAs. Here, with the aim of understanding the poorly studied repetitive DNA organization in crickets and its possible role in sex chromosome differentiation, we characterized the chromosomes of the cricket species Cycloptiloides americanus, a species with the remarkable presence of the unusual sex chromosome system X1X20♂/X1X1X2X2♀. For these proposes, we used C-banding and mapping through the fluorescence in situ hybridization of some repetitive DNAs. The C-banding and distribution of highly and moderately repetitive DNAs (C 0t-1 DNA) varied depending of the chromosome. The greater accumulation of repetitive DNAs in the X2 chromosome was evidenced. The microsatellites were spread along entire chromosomes, but (AG)10 and (TAA)10 were less enriched, mainly in the centromeric areas. Among the multigene families, the 18S rDNA was spread throughout almost all of the chromosomes, except for pair 5 and X2, while the U2 snDNA was placed exclusively in the largest chromosome. Finally, the 5S rDNA was exclusively located in the short arms of the sex chromosomes. The obtained data reinforce the importance of chromosomal dissociation and inversion as a primary evolutionary mechanism to generate neo-sex chromosomes in the species studied, followed by the repetitive DNAs accumulation. Moreover the exclusive placement of 5S rDNA in the sex chromosomes suggests the involvement of this sequence in sex chromosome recognition throughout meiosis and, consequently, their maintenance, in addition to their avoiding degeneration.
Collapse
Affiliation(s)
- Octavio M Palacios-Gimenez
- Departamento de Biologia, Instituto de Biociências/IB, UNESP-Univ Estadual Paulista, Rio Claro, São Paulo, CEP 13506-900, Brazil
| | | |
Collapse
|