1
|
Awuah WA, Ben-Jaafar A, Karkhanis S, Nkrumah-Boateng PA, Kong JSH, Mannan KM, Shet V, Imran S, Bone M, Boye ANA, Ranganathan S, Shah MH, Abdul-Rahman T, Atallah O. Cancer stem cells in meningiomas: novel insights and therapeutic implications. Clin Transl Oncol 2024:10.1007/s12094-024-03728-6. [PMID: 39316249 DOI: 10.1007/s12094-024-03728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Meningiomas (MGs), which arise from meningothelial cells of the dura mater, represent a significant proportion of primary tumours of the central nervous system (CNS). Despite advances in treatment, the management of malignant meningioma (MMG) remains challenging due to diagnostic, surgical, and resection limitations. Cancer stem cells (CSCs), a subpopulation within tumours capable of self-renewal and differentiation, are highlighted as key markers of tumour growth, metastasis, and treatment resistance. Identifying additional CSC-related markers enhances the precision of malignancy evaluations, enabling advancements in personalised medicine. The review discusses key CSC biomarkers that are associated with high levels of expression, aggressive tumour behaviour, and poor outcomes. Recent molecular research has identified CSC-related biomarkers, including Oct-4, Sox2, NANOG, and CD133, which help maintain cellular renewal, proliferation, and drug resistance in MGs. This study highlights new therapeutic strategies that could improve patient prognosis with more durable tumour regression. The use of combination therapies, such as hydroxyurea alongside diltiazem, suggests more efficient and effective MG management compared to monotherapy. Signalling pathways such as NOTCH and hedgehog also offer additional avenues for therapeutic development. CRISPR/Cas9 technology has also been employed to create meningioma models, uncovering pathways related to cell growth and proliferation. Since the efficacy of traditional therapies is limited in most cases due to resistance mechanisms in CSCs, further studies on the biology of CSCs are warranted to develop therapeutic interventions that are likely to be effective in MG. Consequently, improved diagnostic approaches may lead to personalised treatment plans tailored to the specific needs of each patient.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Vallabh Shet
- University of Connecticut New Britain Program, New Britain, Connecticut, USA
| | - Shahzeb Imran
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Matan Bone
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | | | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
2
|
Rodriguez A, Ahluwalia MS, Bettegowda C, Brem H, Carter BS, Chang S, Das S, Eberhart C, Garzon-Muvdi T, Hadjipanayis CG, Hawkins C, Jacques TS, Khalessi AA, McDermott MW, Mikkelsen T, Orr BA, Phillips JJ, Rosenblum M, Shelton WJ, Solomon DA, von Deimling A, Woodworth GF, Rutka JT. Toward standardized brain tumor tissue processing protocols in neuro-oncology: a perspective for gliomas and beyond. Front Oncol 2024; 14:1471257. [PMID: 39376983 PMCID: PMC11456923 DOI: 10.3389/fonc.2024.1471257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Implementation of standardized protocols in neurooncology during the surgical resection of brain tumors is needed to advance the clinical treatment paradigms that use tissue for diagnosis, prognosis, bio-banking, and treatment. Currently recommendations on intraoperative tissue procurement only exist for diffuse gliomas but management of other brain tumor subtypes can also benefit from these protocols. Fresh tissue from surgical resection can now be used for intraoperative diagnostics and functional precision medicine assays. A multidisciplinary neuro-oncology perspective is critical to develop the best avenues for practical standardization. This perspective from the multidisciplinary Oncology Tissue Advisory Board (OTAB) discusses current advances, future directions, and the imperative of adopting standardized protocols for diverse brain tumor entities. There is a growing need for consistent operating room practices to enhance patient care, streamline research efforts, and optimize outcomes.
Collapse
Affiliation(s)
- Analiz Rodriguez
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Manmeet S. Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Susan Chang
- Division of Neuro-Oncology, Department of Neurosurgery, University of California San Francisco, San Francisco, CA, United States
| | - Sunit Das
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Charles Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Costas G. Hadjipanayis
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cynthia Hawkins
- Division of Pathology, Hospital for Sick Children, Toronto, ON, Canada
| | - Thomas S. Jacques
- Developmental Biology and Cancer Programme, UCL GOS Institute of Child Health and Department of Histopathology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Alexander A. Khalessi
- Department of Radiology and Neurosciences, Don and Karen Cohn Chancellor’s Endowed Chair of Neurological Surgery, University of California, San Diego, San Diego, CA, United States
| | - Michael W. McDermott
- Division of Neurosurgery, Miami Neuroscience Institute, Miami, FL, United States
| | - Tom Mikkelsen
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, United States
| | - Brent A. Orr
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Neuropathology Division, Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Mark Rosenblum
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, United States
| | - William J. Shelton
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - David A. Solomon
- Division of Neuropathology, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Graeme F. Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James T. Rutka
- Division of Neurosurgery, Chair Emeritus, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
3
|
Zohdy YM, Saini M, Heit J, Neill S, Morales-Vargas B, Hoang K, Pradilla G, Garzon-Muvdi T. Comparison of Resection Assisting Devices in the Process of Collecting Brain Tumor Tissue for Basic Research: Microdebrider Versus Ultrasonic Aspirator. World Neurosurg 2024; 181:e384-e391. [PMID: 37852473 DOI: 10.1016/j.wneu.2023.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Brain tumors display significant inter and intratumoral heterogeneity, impacting disease progression and outcomes. Preserving surgically resected tissue is vital for ensuring accurate research results to enhance understanding of tumor pathophysiology. This study evaluates tissue integrity and viability of tissue resected using 2 surgical devices for tumor resection: a mechanical microdebrider (MD) and an ultrasonic aspirator (UA). METHODS Tumor samples were obtained from patients undergoing surgical resection of primary and secondary intracranial tumors. Cell viability was assessed, and histopathological analysis of Hematoxylin and Eosin -stained tissues was performed. Adherent monolayer and neurospheres cell cultures were established from paired samples. RNA isolation and quantitative polymerase chain reaction of housekeeping genes were conducted to compare genetic integrity. RESULTS The cellular viability was comparable between samples obtained using both the MD and the UA, with a mean viability of 75.2% ± 15.6 and 70.7% ± 16.8, respectively (P = 0.318). Histopathological evaluation indicated no discernible differences in cellular integrity between the devices. Cell culture success rates and growth characteristics were similar for both devices. RNA concentration and integrity were well-maintained in both MD and UA samples, with no significant differences (P = 0.855). Quantitative polymerase chain reaction analysis of housekeeping genes showed consistent results across matched tissues from both devices and different tumor pathologies. CONCLUSIONS Surgical handheld devices provide valuable, high-quality tissue samples for research. Surgeon preference, tumor pathology, and anatomical location dictate device choice. Both MD and UA devices are reliable for obtaining quality tissue specimens, facilitating translational neuro-oncology research.
Collapse
Affiliation(s)
- Youssef M Zohdy
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Manpreet Saini
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Jeremy Heit
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Stewart Neill
- Department of Pathology, Emory University, Atlanta, Georgia, USA
| | | | - Kimberly Hoang
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Gustavo Pradilla
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
4
|
Sönmez C, Wölfer J, Holling M, Brokinkel B, Stummer W, Wiendl H, Thomas C, Schulte-Mecklenbeck A, Grauer OM. Blockade of inhibitory killer cell immunoglobulin-like receptors and IL-2 triggering reverses the functional hypoactivity of tumor-derived NK-cells in glioblastomas. Sci Rep 2022; 12:6769. [PMID: 35474089 PMCID: PMC9042843 DOI: 10.1038/s41598-022-10680-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) comprise a group of highly polymorphic inhibitory receptors which are specific for classical HLA class-I molecules. Peripheral blood and freshly prepared tumor cell suspensions (n = 60) as well as control samples (n = 32) were investigated for the distribution, phenotype, and functional relevance of CD158ab/KIR2DL1,-2/3 expressing NK-cells in glioblastoma (GBM) patients. We found that GBM were scarcely infiltrated by NK-cells that preferentially expressed CD158ab/KIR2DL1,-2/3 as inhibitory receptors, displayed reduced levels of the activating receptors CD335/NKp46, CD226/DNAM-1, CD159c/NKG2C, and showed diminished capacity to produce IFN-γ and perforin. Functional hypoactivity of GBM-derived NK-cells persisted despite IL-2 preactivation. Blockade with a specific KIR2DL-1,2/3 monoclonal antibody reversed NK-cell inhibition and significantly enhanced degranulation and IFN-γ production of IL-2 preactivated NK-cells in the presence of primary GBM cells and HLA-C expressing but not HLA class-I deficient K562 cells. Additional analysis revealed that significant amounts of IL-2 could be produced by tumor-derived CD4+ and CD8+CD45RA- memory T-cells after combined anti-CD3/anti-CD28 stimulation. Our data indicate that both blockade of inhibitory KIR and IL-2 triggering of tumor-derived NK-cells are necessary to enhance NK-cell responsiveness in GBM.
Collapse
Affiliation(s)
- Cüneyt Sönmez
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.,Department of Spine Surgery, Klinikum Herford, 32049, Herford, Germany
| | - Johannes Wölfer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany.,Department of Neurosurgery and Spine Surgery, Hufeland Klinikum GmbH, 99974, Mühlhausen, Germany
| | - Markus Holling
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Oliver M Grauer
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
5
|
Carney CP, Pandey N, Kapur A, Woodworth GF, Winkles JA, Kim AJ. Harnessing nanomedicine for enhanced immunotherapy for breast cancer brain metastases. Drug Deliv Transl Res 2021; 11:2344-2370. [PMID: 34716900 PMCID: PMC8568876 DOI: 10.1007/s13346-021-01039-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Brain metastases (BMs) are the most common type of brain tumor, and the incidence among breast cancer (BC) patients has been steadily increasing over the past two decades. Indeed, ~ 30% of all patients with metastatic BC will develop BMs, and due to few effective treatments, many will succumb to the disease within a year. Historically, patients with BMs have been largely excluded from clinical trials investigating systemic therapies including immunotherapies (ITs) due to limited brain penetration of systemically administered drugs combined with previous assumptions that BMs are poorly immunogenic. It is now understood that the central nervous system (CNS) is an immunologically distinct site and there is increasing evidence that enhancing immune responses to BCBMs will improve patient outcomes and the efficacy of current treatment regimens. Progress in IT for BCBMs, however, has been slow due to several intrinsic limitations to drug delivery within the brain, substantial safety concerns, and few known targets for BCBM IT. Emerging studies demonstrate that nanomedicine may be a powerful approach to overcome such limitations, and has the potential to greatly improve IT strategies for BMs specifically. This review summarizes the evidence for IT as an effective strategy for BCBM treatment and focuses on the nanotherapeutic strategies currently being explored for BCBMs including targeting the blood-brain/tumor barrier (BBB/BTB), tumor cells, and tumor-supporting immune cells for concentrated drug release within BCBMs, as well as use of nanoparticles (NPs) for delivering immunomodulatory agents, for inducing immunogenic cell death, or for potentiating anti-tumor T cell responses.
Collapse
Affiliation(s)
- Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Anshika Kapur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery and Neurosurgery, University of Maryland School of Medicine, 800 West Baltimore St., Baltimore, MD, 21201, USA.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA.
- Departments of Neurosurgery, Pharmacology, and Pharmaceutical Sciences, University of Maryland School of Medicine, 655 W Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Alenda C, Rojas E, Valor LM. FFPE samples from cavitational ultrasonic surgical aspirates are suitable for RNA profiling of gliomas. PLoS One 2021; 16:e0255168. [PMID: 34293049 PMCID: PMC8297856 DOI: 10.1371/journal.pone.0255168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/11/2021] [Indexed: 01/18/2023] Open
Abstract
During surgical procedures for gliomas, tissue material obtained from cavitational ultrasonic surgical aspirators (CUSAs) is generally discarded but can actually exceed the amount and quality of certain tumour core resections (TCRs). Despite reports indicating the suitability of CUSA-derived material for diagnosis and research, its use is still marginal. We extended these conclusions to formalin-fixed, paraffin-embedded (FFPE) samples, the most common format for archival tumour tissue in anatomical pathology departments, by conducting for the first time RNA-seq analysis in CUSA aspirates. We compared the molecular diagnosis of somatic mutations used in the clinical routine and the gene expression profiles of fixed solid material from CUSA aspirates and TCRs from the same patients in selected gliomas encompassing grades II to IV. Despite the characteristic heterogeneity of gliomas, we found substantial similarities between the corresponding aspirates and TCRs that included transcriptional signatures associated with glioma subtypes. Based on these results, we confirmed that CUSA-fixed biomaterials from glioma surgeries are appropriate for downstream applications and biomarkers screening.
Collapse
Affiliation(s)
- Cristina Alenda
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Departamento de Patología, Hospital General Universitario de Alicante, Alicante, Spain
| | - Estefanía Rojas
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Departamento de Patología, Hospital General Universitario de Alicante, Alicante, Spain
| | - Luis M. Valor
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Laboratorio de Apoyo a la Investigación, Hospital General Universitario de Alicante, Alicante, Spain
- * E-mail:
| |
Collapse
|
7
|
Martirosian V, Deshpande K, Lin M, Jarvis C, Yuan E, Chen TC, Zada G, Giannotta SL, Attenello FJ, Chow F, Neman J. Utilization of Discarded Surgical Tissue from Ultrasonic Aspirators to Establish Patient-Derived Metastatic Brain Tumor Cells: A Guide from the Operating Room to the Research Laboratory. Curr Protoc 2021; 1:e140. [PMID: 34170630 DOI: 10.1002/cpz1.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Patient-derived cells from surgical resections are of paramount importance to brain tumor research. It is well known that there is cellular and microenvironmental heterogeneity within a single tumor mass. Thus, current established protocols for propagating tumor cells in vitro are limiting because resections obtained from conventional singular samples limit the diversity in cell populations and do not accurately model the heterogeneous tumor. Utilization of discarded tissue obtained from cavitron ultrasonic surgical aspirator (CUSA) of the whole tumor mass allows for establishing novel cell lines in vitro from the entirety of the tumor, thereby creating an accurate representation of the heterogeneous population of cells originally present in the tumor. Furthermore, while others have described protocols for establishing patient tumor lines once tissue has arrived in the research lab, a primer from the operating room (OR) to the research lab has not been described before. This is integral, as basic research scientists need to understand the surgical environment of the OR, including the methods utilized to obtain a patient's tumor resection, in order to more accurately model cancer biology in laboratory. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Establishment of brain tumor cell lines from patient-derived CUSA samples: processing brain tumor sample from the OR to the lab Support Protocol 1: Sterilization of microsurgical tools in preparation for dissection Support Protocol 2: Collagen coating of tissue culture flasks Basic Protocol 2: Selection of tumor cells in vitro Support Protocol 3: FACS sorting tumor sample to isolate cancer cells from heterogeneous cell population.
Collapse
Affiliation(s)
- Vahan Martirosian
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Casey Jarvis
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Edith Yuan
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Thomas C Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Gabriel Zada
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Steven L Giannotta
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Frank J Attenello
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Frances Chow
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Josh Neman
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| |
Collapse
|
8
|
Close HJ, Stead LF, Nsengimana J, Reilly KA, Droop A, Wurdak H, Mathew RK, Corns R, Newton‐Bishop J, Melcher AA, Short SC, Cook GP, Wilson EB. Expression profiling of single cells and patient cohorts identifies multiple immunosuppressive pathways and an altered NK cell phenotype in glioblastoma. Clin Exp Immunol 2020; 200:33-44. [PMID: 31784984 PMCID: PMC7066386 DOI: 10.1111/cei.13403] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive cancer with a very poor prognosis. Generally viewed as weakly immunogenic, GBM responds poorly to current immunotherapies. To understand this problem more clearly we used a combination of natural killer (NK) cell functional assays together with gene and protein expression profiling to define the NK cell response to GBM and explore immunosuppression in the GBM microenvironment. In addition, we used transcriptome data from patient cohorts to classify GBM according to immunological profiles. We show that glioma stem-like cells, a source of post-treatment tumour recurrence, express multiple immunomodulatory cell surface molecules and are targeted in preference to normal neural progenitor cells by natural killer (NK) cells ex vivo. In contrast, GBM-infiltrating NK cells express reduced levels of activation receptors within the tumour microenvironment, with hallmarks of transforming growth factor (TGF)-β-mediated inhibition. This NK cell inhibition is accompanied by expression of multiple immune checkpoint molecules on T cells. Single-cell transcriptomics demonstrated that both tumour and haematopoietic-derived cells in GBM express multiple, diverse mediators of immune evasion. Despite this, immunome analysis across a patient cohort identifies a spectrum of immunological activity in GBM, with active immunity marked by co-expression of immune effector molecules and feedback inhibitory mechanisms. Our data show that GBM is recognized by the immune system but that anti-tumour immunity is restrained by multiple immunosuppressive pathways, some of which operate in the healthy brain. The presence of immune activity in a subset of patients suggests that these patients will more probably benefit from combination immunotherapies directed against multiple immunosuppressive pathways.
Collapse
Affiliation(s)
- H. J. Close
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - L. F. Stead
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - J. Nsengimana
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - K. A. Reilly
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - A. Droop
- MRC Medical Bioinformatics CentreUniversity of LeedsLeedsUK
| | - H. Wurdak
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - R. K. Mathew
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
- Department of NeurosurgeryLeeds General InfirmaryLeedsUK
| | - R. Corns
- Department of NeurosurgeryLeeds General InfirmaryLeedsUK
| | - J. Newton‐Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | | | - S. C. Short
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - G. P. Cook
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| | - E. B. Wilson
- Leeds Institute of Medical Research at St James's, University of Leeds School of Medicine, St James's University HospitalLeedsUK
| |
Collapse
|
9
|
Grauer O, Jaber M, Hess K, Weckesser M, Schwindt W, Maring S, Wölfer J, Stummer W. Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients. J Neurooncol 2018; 141:83-94. [PMID: 30506500 PMCID: PMC6341053 DOI: 10.1007/s11060-018-03005-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
Background There is an increasing interest in local tumor ablative treatment modalities that induce immunogenic cell death and the generation of antitumor immune responses. Methods We report six recurrent glioblastoma patients who were treated with intracavitary thermotherapy after coating the resection cavity wall with superparamagnetic iron oxide nanoparticles (“NanoPaste” technique). Patients underwent six 1-h hyperthermia sessions in an alternating magnetic field and, if possible, received concurrent fractionated radiotherapy at a dose of 39.6 Gy. Results There were no major side effects during active treatment. However, after 2–5 months, patients developed increasing clinical symptoms. CT scans showed tumor flare reactions with prominent edema around nanoparticle deposits. Patients were treated with dexamethasone and, if necessary, underwent re-surgery to remove nanoparticles. Histopathology revealed sustained necrosis directly adjacent to aggregated nanoparticles without evidence for tumor activity. Immunohistochemistry showed upregulation of Caspase-3 and heat shock protein 70, prominent infiltration of macrophages with ingested nanoparticles and CD3+ T-cells. Flow cytometric analysis of freshly prepared tumor cell suspensions revealed increased intracellular ratios of IFN-γ to IL-4 in CD4+ and CD8+ memory T cells, and activation of tumor-associated myeloid cells and microglia with upregulation of HLA-DR and PD-L1. Two patients had long-lasting treatment responses > 23 months without receiving any further therapy. Conclusion Intracavitary thermotherapy combined with radiotherapy can induce a prominent inflammatory reaction around the resection cavity which might trigger potent antitumor immune responses possibly leading to long-term stabilization of recurrent GBM patients. These results warrant further investigations in a prospective phase-I trial.
Collapse
Affiliation(s)
- Oliver Grauer
- Department of Neurology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| | - Mohammed Jaber
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Katharina Hess
- Institute of Neuropathology, University Hospital of Münster, Münster, Germany
| | - Matthias Weckesser
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Wolfram Schwindt
- Institute of Radiology, University Hospital of Münster, Münster, Germany
| | - Stephan Maring
- Department of Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Johannes Wölfer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany.,Competence Center for Neurosurgery, Hufeland Klinikum GmbH, Langensalzaer Landstraße 1, 99974, Mühlhausen, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
10
|
Khan I, Baeesa S, Bangash M, Schulten HJ, Alghamdi F, Qashqari H, Madkhali N, Carracedo A, Saka M, Jamal A, Al-Maghrabi J, AlQahtani M, Al-Karim S, Damanhouri G, Saini K, Chaudhary A, Abuzenadah A, Hussein D. Pleomorphism and drug resistant cancer stem cells are characteristic of aggressive primary meningioma cell lines. Cancer Cell Int 2017; 17:72. [PMID: 28736504 PMCID: PMC5521079 DOI: 10.1186/s12935-017-0441-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background Meningioma tumors arise in arachnoid membranes, and are the most reported central nervous system (CNS) tumors worldwide. Up to 20% of grade I meningioma tumors reoccur and currently predictive cancer stem cells (CSCs) markers for aggressive and drug resistant meningiomas are scarce. Methods Meningioma tissues and primary cell lines were investigated using whole transcriptome microarray analysis, immunofluorescence staining of CSCs markers (including CD133, Sox2, Nestin, and Frizzled 9), and drug treatment with cisplatin or etoposide. Results Unsupervised hierarchical clustering of six meningioma samples separated tissues into two groups. Analysis identified stem cells related pathways to be differential between the two groups and indicated the de-regulation of the stem cell associated genes Reelin (RELN), Calbindin 1 (CALB1) and Anterior Gradient 2 Homolog (AGR2). Immunofluorescence staining for four tissues confirmed stemness variation in situ. Biological characterization of fifteen meningioma primary cell lines concordantly separated cells into two functionally distinct sub-groups. Pleomorphic cell lines (NG type) grew significantly faster than monomorphic cell lines (G type), had a higher number of cells that express Ki67, and were able to migrate aggressively in vitro. In addition, NG type cell lines had a lower expression of nuclear Caspase-3, and had a significantly higher number of CSCs co-positive for CD133+ Sox2+ or AGR2+ BMI1+. Importantly, these cells were more tolerant to cisplatin and etoposide treatment, showed a lower level of nuclear Caspase-3 in treated cells and harbored drug resistant CSCs. Conclusion Collectively, analyses of tissues and primary cell lines revealed stem cell associated genes as potential targets for aggressive and drug resistant meningiomas. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0441-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ishaq Khan
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hanadi Qashqari
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Nawal Madkhali
- Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,Galician Foundation of Genomic Medicine, Cyber-University of Santiago de Compostela, 15706 Santiago De Compostela, Spain
| | - Mohamad Saka
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Awatif Jamal
- Pathology Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Jaudah Al-Maghrabi
- Pathology Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohammed AlQahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Al-Karim
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Ghazi Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Kulvinder Saini
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,School of Biotechnology, Eternal University, Baru Sahib Road, Sirmour, 173101 Himachal Pradesh India
| | - Adeel Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Deema Hussein
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
11
|
Dubinski D, Wölfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H, Grauer OM. CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol 2015; 18:807-18. [PMID: 26578623 DOI: 10.1093/neuonc/nov280] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of myeloid cells that are significantly expanded in cancer patients and are associated with tumor progression. METHODS Multicolor flow cytometry was used to study the frequency, phenotype, and function of MDSCs in peripheral blood and freshly resected tumors of 52 participants with primary glioblastoma (GBM). RESULTS The frequency of CD14(high)CD15(pos) monocytic and CD14(low)CD15(pos) granulocytic MDSCs was significantly higher in peripheral blood of GBM participants compared with healthy donors. The majority of granulocytic MDSCs consisted of CD14(low)CD15(high) neutrophilic MDSCs with high T-cell suppressive capacities. At the tumor side, we found an increase in CD14(high)CD15(pos) monocytic MDSCs and high frequencies of CD14(low)CD15(pos) granulocytic MDSCs that displayed an activated phenotype with downregulation of CD16 and upregulation of HLA-DR molecules, which did not inhibit T-cell proliferative responses in vitro. However, a strong association between granulocytic MDSCs and CD4(+) effector memory T-cells (TEM) within the tumors was detected. Tumor-derived CD4(+) TEM expressed high levels of PD-1 when compared with their blood-derived counterparts and were functionally exhausted. The respective ligand, PD-L1, was significantly upregulated on tumor-derived MDSCs, and T-cell co-culture experiments confirmed that glioma-infiltrating MDSCs can induce PD-1 expression on CD4(+) TEM. CONCLUSIONS Our findings provide a detailed characterization of different MDSC subsets in GBM patients and indicate that both granulocytic MDSCs in peripheral blood and at the tumor site play a major role in GBM-induced T-cell suppression.
Collapse
Affiliation(s)
- Daniel Dubinski
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Johannes Wölfer
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Martin Hasselblatt
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Tilman Schneider-Hohendorf
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Walter Stummer
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Heinz Wiendl
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Oliver M Grauer
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| |
Collapse
|
12
|
Tang H, Zhang H, Xie Q, Gong Y, Zheng M, Wang D, Zhu H, Chen X, Zhou L. Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas. Chin J Cancer Res 2015; 26:653-7. [PMID: 25561762 DOI: 10.3978/j.issn.1000-9604.2014.12.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/04/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. METHODS Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. RESULTS All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. CONCLUSIONS This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique.
Collapse
Affiliation(s)
- Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haishi Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mingzhe Zheng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongda Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiancheng Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|