1
|
Ghasemi M, Alizadeh E, Motlagh BF, Zarghami N. The effect of exogenous ciliary neurotrophic factor on cell cycle and neural differentiation markers of in vitro model cells: New insights for future therapeutic approaches. Cell Biochem Funct 2021; 39:636-645. [PMID: 33890305 DOI: 10.1002/cbf.3628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/06/2022]
Abstract
Retinoblastoma is known as childhood rare malignancy of the retina. Ciliary neurotrophic factor (CNTF) was previously found to reduce degeneration and promote retina survival. This work investigated the effects of CNTF supplementation on in-vitro model cells including retinoblastoma (Y79) and adipose-derived mesenchymal stem cells (AMSCs) viability, proliferation, gene expression and cell cycle. A drop of viability was detected in Y79 treated with CNTF in a dose-dependent manner (P < .05). However, the proliferation of AMSCs was increased at lower concentrations of CNTF (5 ng/mL), but declined in higher doses (50 and 100 ng/mL). The BrdU assay confirmed the MTT assay results. Cell cycle was arrested in both Y79 and AMSCs in the G0/G1 phase by CNTF treatment. A considerable down-regulation of Bcl2, CycD1 and N-Myc genes expression (P < .05) inversely, P15 and P21 genes up-regulation in treated Y79 cells was observed. Besides, stemness genes' transcription was reduced in AMSCs (P < .05), and levels of neuronal-specific markers such as neuron-specific enolase (NSE) and neuronal nuclei (NeuN) were increased (P < .05). The findings of this study suggest a promising potential of CNTF in terms of arresting Y79 retinoblastoma cells, and differentiation-inducing to AMSCs, which could be valuable for managing future innovative treatments targeting retinoblastoma. SIGNIFICANCE OF THE STUDY: We demonstrate that CNTF has the potential to reduce proliferation of Y79 cells and induce the cell cycle arrest of them. Also, down-regulation of oncogenes (such as N-Myc) while up-regulation of tumour suppressor genes (such as P21) was detected by exposure of Y79 cells to CNTF. Furthermore, we observed the cell cycle arrest, reduction of stemness gene and up-regulation of neural differentiation markers in AMSCs treated with CNTF. These results support the probable promising effects of CNTF for controlling retinoblastoma.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Stem Cell Research Center (SRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Stem Cell Research Center (SRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Fallahi Motlagh
- Department of Ophthalmology, Nikokar Eye Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center (SRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Dobrowolski M, Cave C, Levy-Myers R, Lee C, Park S, Choi BR, Xiao B, Yang W, Sockanathan S. GDE3 regulates oligodendrocyte precursor proliferation via release of soluble CNTFRα. Development 2020; 147:dev180695. [PMID: 31932351 PMCID: PMC6983723 DOI: 10.1242/dev.180695] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/23/2019] [Indexed: 02/05/2023]
Abstract
Oligodendrocyte development is tightly controlled by extrinsic signals; however, mechanisms that modulate cellular responses to these factors remain unclear. Six-transmembrane glycerophosphodiester phosphodiesterases (GDEs) are emerging as central regulators of cellular differentiation via their ability to shed glycosylphosphatidylinositol (GPI)-anchored proteins from the cell surface. We show here that GDE3 controls the pace of oligodendrocyte generation by negatively regulating oligodendrocyte precursor cell (OPC) proliferation. GDE3 inhibits OPC proliferation by stimulating ciliary neurotrophic factor (CNTF)-mediated signaling through release of CNTFRα, the ligand-binding component of the CNTF-receptor multiprotein complex, which can function as a soluble factor to activate CNTF signaling. GDE3 releases soluble CNTFRα by GPI-anchor cleavage from the plasma membrane and from extracellular vesicles (EVs) after co-recruitment of CNTFRα in EVs. These studies uncover new physiological roles for GDE3 in gliogenesis and identify GDE3 as a key regulator of CNTF-dependent regulation of OPC proliferation through release of CNTFRα.
Collapse
Affiliation(s)
- Mateusz Dobrowolski
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N Wolfe Street, PCTB 1004, Baltimore, MD 21205, USA
| | - Clinton Cave
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N Wolfe Street, PCTB 1004, Baltimore, MD 21205, USA
- Middlebury College, Neuroscience Program, 276 Bicentennial Way, MBH 351, Middlebury, VT 05753, USA
| | - Reuben Levy-Myers
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N Wolfe Street, PCTB 1004, Baltimore, MD 21205, USA
| | - ChangHee Lee
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N Wolfe Street, PCTB 1004, Baltimore, MD 21205, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sungjin Park
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N Wolfe Street, PCTB 1004, Baltimore, MD 21205, USA
- University of Utah, BPRB 390D South 2030 East, Salt Lake City, UT 84112, USA
| | - Bo-Ran Choi
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N Wolfe Street, PCTB 1004, Baltimore, MD 21205, USA
| | - Bo Xiao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanchun Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanthini Sockanathan
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N Wolfe Street, PCTB 1004, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Cancer Conditioned Medium Modulates Functional and Phenotypic Properties of Human Decidua Parietalis Mesenchymal Stem/Stromal Cells. Tissue Eng Regen Med 2019; 16:615-630. [PMID: 31824824 DOI: 10.1007/s13770-019-00207-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/17/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal Stem/Stromal Cells (MSCs) from the decidua parietalis (DPMSCs) of human term placenta express several molecules with important biological and immunological properties. DPMSCs induce natural killer cell expression of inflammatory receptors and their cytotoxic activity against cancer cells. These properties make DPMSCs promising therapeutical agent for cancer. The successful development of MSCs as an anti-cancer therapeutic cells rely on their ability to function in a hostile inflammatory and oxidative stress cancer environment. Here, we studied the effects of conditioned medium obtained from the culture of breast cancer cells (CMMDA-231) on the functional and phenotypic properties of DPMSCs. Methods DPMSCs were cultured with CMMDA-231 and important functions of DPMSCs were measured. The effect of CMMDA-231 on DPMSC expression of several genes with different functions was also evaluated. Results DPMSCs were able to function in response to CMMDA-231, but with reduced proliferative and adhesive potentials. Preconditioning of DPMSCs with CMMDA-231 enhanced their adhesion while reducing their invasion. In addition, CMMDA-231 modulated DPMSC expression of many genes with various functional (i.e., proliferation, adhesion, and invasion) properties. DPMSCs also showed increased expression of genes with anti-cancer property. Conclusion These data show the ability of DPMSCs to survive and function in cancer environment. In addition, preconditioning of DPMSCs with CMMDA-231 enhanced their anti-cancer properties and thus demonstrating their potential as an anti-cancer therapeutic agent. However, future studies are essential to reveal the mechanism underlying the effects of MDA-231 on DPMSC functional activities and also to confirm the anti-cancer therapeutic potential of DPMSCs.
Collapse
|
4
|
Zhang L, Han X, Cheng X, Tan XF, Zhao HY, Zhang XH. Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells. Neural Regen Res 2016; 11:597-603. [PMID: 27212920 PMCID: PMC4870916 DOI: 10.4103/1673-5374.180744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the pathways and mechanisms in this process are still unclear. Seven days after fimbria fornix transection, our reverse transcription polymerase chain reaction, western blot assay, and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor mRNA and protein expression in the denervated hippocampus. Moreover, neural stem cells derived from hippocampi of fetal (embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days, with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected. Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus, which may promote neuronal differentiation of neural stem cells in the denervated hippocampus.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao Han
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Cheng
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xue-Feng Tan
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - He-Yan Zhao
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xin-Hua Zhang
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
5
|
Yin XF, Xu HM, Jiang YX, Zhi YL, Liu YX, Xiang HW, Liu K, Ding XD, Sun P. Lentivirus-mediated Persephin over-expression in Parkinson's disease rats. Neural Regen Res 2016; 10:1814-8. [PMID: 26807117 PMCID: PMC4705794 DOI: 10.4103/1673-5374.170309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Persephin, together with glial cell line-derived neurotrophic factor and neurturin, has a neurotrophic effect and promotes the survival of motor neurons cultured in vitro. In this study, dopaminergic neurons in the substantia nigra of rats were transfected with the Persephin gene. One week later 6-hydroxydopamine was injected into the anterior medial bundle to establish a Parkinson's disease model in the rats. Results found that the number of dopaminergic neurons in the substantia nigra increased, tyrosine hydroxylase expression was upregulated and concentrations of dopamine and its metabolites in corpus striatum were increased after pretreatment with Persephin gene. In addition, the rotating effect of the induced Parkinson's disease rats was much less in the group pretreated with the Persephin gene. Persephin has a neuroprotective effect on the 6-hydroxydopamine-induced Parkinson's disease through protecting dopaminergic neurons.
Collapse
Affiliation(s)
- Xiao-Feng Yin
- Department of Neurosurgery, the Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hua-Min Xu
- Department of Physiology, Qingdao University, Qingdao, Shandong Province, China
| | - Yun-Xia Jiang
- Nursing College of Qingdao University, Qingdao, Shandong Province, China
| | - Yun-Lai Zhi
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yu-Xiu Liu
- Department of Nursing, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Heng-Wei Xiang
- Department of Neurosurgery, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Kai Liu
- Department of Neurosurgery, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Xiao-Dong Ding
- Department of Neurosurgery, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Peng Sun
- Department of Neurosurgery, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|