1
|
Chen M, Lv A, Zhang S, Zheng J, Zhang M, Chen L, He Q, Zhuang J, Lin N, Xu L, Huang H. First Report of Filipino β 0-Thalassemia/β-Thalassemia in a Chinese Family. Hemoglobin 2024; 48:34-38. [PMID: 38192212 DOI: 10.1080/03630269.2023.2301487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
A pregnant woman living in Fujian Province, southeastern China, presented due to a risk of having a baby with β-thalassemia major, during her second pregnancy, since she and her husband were suspected as β-thalassemia carriers and their affected daughter was a transfusion-dependent patient. Using the common α-thalassemia and β-thalassemia genotypes test, the pregnant woman was diagnosed as a β-thalassemia carrier with βIVS-2 - 654 (C→T)/βN genotype and her daughter had a homozygosity for IVS - 2 - 654 (C→T) mutation, however, no abnormalities were detected in her husband. SMRT identified a Filipino β0-deletion in her husband, and MLPA also revealed an unknown deletion in the HBB gene. Electrophoresis showed approximately 350 bp of the PCR product, and the β-Filipino genotype presented novel fracture fragments ranging from 5,112,884 to 5,231,358 bp, and lacked a 118,475 bp fragment relative to the wild-type sequence. The daughter was therefore diagnosed with the βIVS-2 - 654 (C→T)/βFilipino genotype. Prenatal diagnosis with umbilical cord blood at 27th week of gestation showed heteroztgosity for IVS - 2 - 654 (C→T) mutation in the fetus and continued pregnancy was recommended. In conclusion, we identified the Filipino β0-deletion in a Chinese family, from Fujian area, for the first time, during prenatal screening.
Collapse
Affiliation(s)
- Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Aixiang Lv
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Siwen Zhang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Junhao Zheng
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Min Zhang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Lingji Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Qianqian He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Aziz NA, Taib WRW, Kharolazaman NK, Ismail I, Al-Jamal HAN, Jamil NWAWA, Esa E, Ibrahim H. Evidence of new intragenic HBB haplotypes model for the prediction of beta-thalassemia in the Malaysian population. Sci Rep 2021; 11:16772. [PMID: 34408192 PMCID: PMC8373976 DOI: 10.1038/s41598-021-96018-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
This study sought to determine the potential role of HBB haplotypes to predict beta-thalassemia in the Malaysian population. A total of 543 archived samples were selected for this study. Five tagging SNPs in the beta-globin gene (HBB; NG_000007.3) were analyzed for SNP-based and haplotype association using SHEsis online software. Single-SNP-based association analysis showed three SNPs have a statistically significant association with beta-thalassemia. When Bonferroni correction was applied, four SNPs were found statistically significant with beta-thalassemia; IVS2-74T>G (padj = 0.047), IVS2-16G>C (padj = 0.017), IVS2-666C>T (padj = 0.017) and 3'UTR + 314G>A (padj = 0.002). However, 3'UTR + 233G>C did not yield a significant association with padj value = 0.076. Further investigation using combined five SNPs for haplotype association analysis revealed three susceptible haplotypes with significant p values of which, haplotypes 1-2-2-1-1 (p = 6.49 × 10-7, OR = 10.371 [3.345-32.148]), 1-2-1-1-1 (p = 0.009, OR = 1.423 [1.095-1.850] and 1-1-1-1-1 (p = 1.39 × 10-4, OR = 10.221 [2.345-44.555]). Three haplotypes showed protective effect with significant p value of which, 2-2-1-1-1 (p = 0.006, OR = 0.668 [0.500-0.893]), 1-1-2-2-1 (p = 0.013, OR = 0.357 [0.153-0.830]) and 1-1-2-1-1 (p = 0.033, OR = 0.745 [0.567-0.977]). This study has identified the potential use of intragenic polymorphic markers in the HBB gene, which were significantly associated with beta-thalassemia. Combining these five SNPs defined a new haplotype model for beta-thalassemia and further evaluation for predicting severity in beta-thalassemia.
Collapse
Affiliation(s)
- Nur-Aisyah Aziz
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Terengganu, Malaysia
- Molecular Genetics Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institute of Health (NIH), Ministry of Health Malaysia, Putrajaya, Malaysia
| | - Wan-Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Terengganu, Malaysia.
| | - Nur-Khairunnisa Kharolazaman
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Terengganu, Malaysia
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Terengganu, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Terengganu, Malaysia
| | | | - Ezalia Esa
- Molecular Genetics Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institute of Health (NIH), Ministry of Health Malaysia, Putrajaya, Malaysia
| | - Hishamshah Ibrahim
- Malaysian Thalassemia Registry, Medical Development Division, Ministry of Health (MOH), Putrajaya, Malaysia
| |
Collapse
|
3
|
Zhang H, Li C, Li J, Hou S, Chen D, Yan H, Chen S, Liu S, Yin Z, Yang X, Tan J, Huang X, Zhang L, Fang J, Zhang C, Li W, Guo J, Lei D. Next-generation sequencing improves molecular epidemiological characterization of thalassemia in Chenzhou Region, P.R. China. J Clin Lab Anal 2019; 33:e22845. [PMID: 30809867 PMCID: PMC6528559 DOI: 10.1002/jcla.22845] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Objectives Thalassemia is a highly prevalent monogenic inherited disease in southern China. It is important to collect epidemiological data comprehensively for proper prevention and treatment. Methods In this study, blood samples collected from 15 807 residents of Chenzhou were primarily screened by hematological tests. A total of 3973 samples of suspected thalassemia carriers were further characterized by combined next‐generation sequencing (NGS) and Gap‐PCR. Results In total, 1704 subjects were diagnosed as thalassemia carriers with a total prevalence rate of 10.78%, including 943 α‐thalassemia carriers, 708 β‐thalassemia carriers, and 53 composite α and β‐thalassemia carriers. The prevalence rates of α‐thalassemia, β‐thalassemia, and composite α and β‐thalassemia were 5.97%, 4.48%, and 0.34%, respectively. Meanwhile, we characterized 19 α‐thalassemia variations and 21 β‐thalassemia variations in thalassemia carriers. Approximately 2.88% of thalassemia carriers would be missed by traditional genetic analysis. In addition, four novel thalassemia mutations and one novel abnormal hemoglobin mutation were identified. Conclusions Our data suggest a high prevalence of thalassemia and a diverse spectrum of thalassemia‐associated variations in Chenzhou. Also, combined NGS and Gap‐PCR is an effective thalassemia screening method. Our findings might be helpful for prevention and treatment of thalassemia in this region.
Collapse
Affiliation(s)
- Haoqing Zhang
- Center of Prenatal Diagnosis, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Caiyun Li
- Center of Prenatal Diagnosis, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Jianbiao Li
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Shuai Hou
- Center of Prenatal Diagnosis, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Danjing Chen
- Center of Prenatal Diagnosis, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Haiying Yan
- Center of Prenatal Diagnosis, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Shiping Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Saijun Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhenzhen Yin
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xiaoqin Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Jufang Tan
- Center of Prenatal Diagnosis, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Xiaoyan Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Liming Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Junbin Fang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Caifen Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Wei Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Guo
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Dongzhu Lei
- Center of Prenatal Diagnosis, Chenzhou No. 1 People's Hospital, Chenzhou, China
| |
Collapse
|
4
|
Kho SL, Chua KH, George E, Tan JAMA. A novel gap-PCR with high resolution melting analysis for the detection of α-thalassaemia Southeast Asian and Filipino β°-thalassaemia deletion. Sci Rep 2015; 5:13937. [PMID: 26365497 PMCID: PMC4568469 DOI: 10.1038/srep13937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/31/2015] [Indexed: 11/11/2022] Open
Abstract
Homozygosity for the α-thalassaemia Southeast Asian (α-SEA) and Filipino β0-thalassaemia (β-FIL) deletions can cause serious complications leading to foetal death or life-long blood transfusions. A rapid and accurate molecular detection assay is essential in populations where the deletions are common. In this study, gap-polymerase chain reaction (PCR) with high resolution melting (HRM) analysis was developed to detect both the large deletions. Melting curves at 86.9 ± 0.1 °C were generated by normal individuals without the α-SEA deletion, 84.7 ± 0.1 °C by homozygous α-SEA deletion individuals and two melting curves at 84.7 ± 0.1 °C and 86.9 ± 0.1 °C by α-SEA deletion carriers. Normal individuals without the β-FIL deletion produce amplicons with a melting temperature (Tm) at 74.6 ± 0.1 °C, homozygous β-FIL individuals produce amplicons with Tm at 73.6 ± 0.1 °C and heterozygous β-FIL individuals generate two amplicons with Tm at 73.6 ± 0.1 °C and 74.6 ± 0.1 °C. Evaluation using blinded tests on 220 DNA samples showed 100% sensitivity and specificity. The developed assays are sensitive and specific for rapid molecular and prenatal diagnosis for the α-SEA and β-FIL deletions.
Collapse
Affiliation(s)
- Siew Leng Kho
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Jin Ai Mary Anne Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|