1
|
Abstract
Colorectal cancer (CRC) is a common and preventable malignancy, and routine CRC screening is recommended for average risk individuals between the ages of 50 and 75 years. Screening has been shown to decrease CRC incidence and mortality. Once patients are older than 75 years, the risk to benefit ratio of ongoing screening begins to shift. As comorbidities increase and life expectancy decreases, the future potential benefits of CRC prevention become less robust, and risk for screening-related complications grows. However, firm age cutoffs are not sufficient to guide these decisions, as there is substantial physiologic heterogeneity among individuals of the same age.
Collapse
Affiliation(s)
- Andrea L Betesh
- Department of Gastroenterology and Hepatology, New York-Presbyterian Hospital/Weill Cornell Medicine, 1305 York Avenue, 4th Floor, New York, NY 10021, USA.
| | - Felice H Schnoll-Sussman
- Department of Gastroenterology and Hepatology, New York-Presbyterian Hospital/Weill Cornell Medicine, 1315 York Avenue, Ground Floor, New York, NY 10021, USA
| |
Collapse
|
2
|
Kim JH, Kang GH. Evolving pathologic concepts of serrated lesions of the colorectum. J Pathol Transl Med 2020; 54:276-289. [PMID: 32580537 PMCID: PMC7385269 DOI: 10.4132/jptm.2020.04.15] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we provide an up-to-date review of the histopathology and molecular pathology of serrated colorectal lesions. First, we introduce the updated contents of the 2019 World Health Organization classification for serrated lesions. The sessile serrated lesion (SSL) is a new diagnostic terminology that replaces sessile serrated adenoma and sessile serrated polyp. The diagnostic criteria for SSL were revised to require only one unequivocal distorted serrated crypt, which is sufficient for diagnosis. Unclassified serrated adenomas have been included as a new category of serrated lesions. Second, we review ongoing issues concerning the morphology of serrated lesions. Minor morphologic variants with distinct molecular features were recently defined, including serrated tubulovillous adenoma, mucin-rich variant of traditional serrated adenoma (TSA), and superficially serrated adenoma. In addition to intestinal dysplasia and serrated dysplasia, minimal deviation dysplasia and not otherwise specified dysplasia were newly suggested as dysplasia subtypes of SSLs. Third, we summarize the molecular features of serrated lesions. The critical determinant of CpG island methylation development in SSLs is patient age. Interestingly, there may be ethnic differences in BRAF/KRAS mutation frequencies in SSLs. The molecular pathogenesis of TSAs is divided into KRAS and BRAF mutation pathways. SSLs with MLH1 methylation can progress into favorable prognostic microsatellite instability-positive (MSI+)/CpG island methylator phenotype-positive (CIMP+) carcinomas, whereas MLH1-unmethylated SSLs and BRAF-mutated TSAs can be precursors of poor-prognostic MSI-/CIMP+ carcinomas. Finally, based on our recent data, we propose an algorithm for stratifying risk subgroups of non-dysplastic SSLs.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Fanelli GN, Dal Pozzo CA, Depetris I, Schirripa M, Brignola S, Biason P, Balistreri M, Dal Santo L, Lonardi S, Munari G, Loupakis F, Fassan M. The heterogeneous clinical and pathological landscapes of metastatic Braf-mutated colorectal cancer. Cancer Cell Int 2020; 20:30. [PMID: 32015690 PMCID: PMC6990491 DOI: 10.1186/s12935-020-1117-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a complex and molecularly heterogeneous disease representing one of the most frequent causes of cancer-related death worldwide. About 8–15% of CRCs harbor a mutation in BRAF gene, a proto-oncogene involved in cell proliferation, differentiation and survival through the MAPK signaling cascade. The acquisition of BRAF mutation is an early event in the “serrated” CRC carcinogenetic pathway and is associated with specific and aggressive clinico-pathological and molecular features. Despite that the presence of BRAF mutation is a well-recognized negative prognostic biomarker in metastatic CRC (mCRC), a great heterogeneity in survival outcome characterizes these patients, due to the complex, and still not completely fully elucidated, interactions between the clinical, genetic and epigenetic landscape of BRAF mutations. Because of the great aggressiveness of BRAF-mutated mCRCs, only 60% of patients can receive a second-line chemotherapy; so intensive combined and tailored first-line approach could be a potentially effective strategy, but to minimize the selective pressure of resistant clones and to reduce side effects, a better stratification of patients bearing BRAF mutations is needed. ![]()
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Carlo Alberto Dal Pozzo
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Ilaria Depetris
- 2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Schirripa
- 2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Brignola
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Paola Biason
- 2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Mariangela Balistreri
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Luca Dal Santo
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Sara Lonardi
- 2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giada Munari
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy.,2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Fotios Loupakis
- 2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Matteo Fassan
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| |
Collapse
|
4
|
Advani SM, Advani PS, Brown DW, DeSantis SM, Korphaisarn K, VonVille HM, Bressler J, Lopez DS, Davis JS, Daniel CR, Sarshekeh AM, Braithwaite D, Swartz MD, Kopetz S. Global differences in the prevalence of the CpG island methylator phenotype of colorectal cancer. BMC Cancer 2019; 19:964. [PMID: 31623592 PMCID: PMC6796359 DOI: 10.1186/s12885-019-6144-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background CpG Island Methylator Phenotype (CIMP) is an epigenetic phenotype in CRC characterized by hypermethylation of CpG islands in promoter regions of tumor suppressor genes, leading to their transcriptional silencing and loss of function. While the prevalence of CRC differs across geographical regions, no studies have compared prevalence of CIMP-High phenotype across regions. The purpose of this project was to compare the prevalence of CIMP across geographical regions after adjusting for variations in methodologies to measure CIMP in a meta-analysis. Methods We searched PubMed, Medline, and Embase for articles focusing on CIMP published from 2000 to 2018. Two reviewers independently identified 111 articles to be included in final meta-analysis. We classified methods used to quantify CIMP into 4 categories: a) Classical (MINT marker) Panel group b) Weisenberg-Ogino (W-O) group c) Human Methylation Arrays group and d) Miscellaneous group. We compared the prevalence of CIMP across geographical regions after correcting for methodological variations using meta-regression techniques. Results The pooled prevalence of CIMP-High across all studies was 22% (95% confidence interval:21–24%; I2 = 94.75%). Pooled prevalence of CIMP-H across Asia, Australia, Europe, North America and South America was 22, 21, 21, 27 and 25%, respectively. Meta-regression analysis identified no significant differences in the prevalence of CIMP-H across geographical regions after correction for methodological variations. In exploratory analysis, we observed variations in CIMP-H prevalence across countries. Conclusion Although no differences were found for CIMP-H prevalence across countries, further studies are needed to compare the influence of demographic, lifestyle and environmental factors in relation to the prevalence of CIMP across geographical regions.
Collapse
Affiliation(s)
- Shailesh Mahesh Advani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0426, Houston, TX, 77030, USA. .,Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20007, USA. .,Social Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, MD, 20892, USA.
| | - Pragati Shailesh Advani
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Institutes of Health, National Cancer Institute, Rockville, MD, 20850, USA
| | - Derek W Brown
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Stacia M DeSantis
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Krittiya Korphaisarn
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0426, Houston, TX, 77030, USA
| | - Helena M VonVille
- Library, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jan Bressler
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - David S Lopez
- Division of Urology- UTHealth McGovern Medical School, Houston, TX, 77030, USA.,Department of Preventive Medicine and Community Health, UTMB Health-School of Medicine, Galveston, TX, 77555-1153, USA
| | - Jennifer S Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amir Mehrvarz Sarshekeh
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0426, Houston, TX, 77030, USA
| | - Dejana Braithwaite
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20007, USA
| | - Michael D Swartz
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0426, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Zhou K, Cai C, He Y, Zhou C, Zhao S, Ding X, Duan S. Association Between RASSF2 Methylation and Gastric Cancer: A PRISMA-Compliant Systematic Review and Meta-Analysis. DNA Cell Biol 2019; 38:1147-1154. [PMID: 31453724 DOI: 10.1089/dna.2019.4922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RASSF2 is a tumor suppressor gene closely related to gastric cancer. This meta-analysis was designed to assess the quality in the previous studies and establish the value of RASSF2 methylation in the prediction and prognosis of gastric cancer. The eligible literatures with publication deadline of May 3, 2019 were collected from PubMed, EMBASE, CNKI, Wanfang, and CNVIP databases. The correlation between RASSF2 methylation level and gastric cancer was estimated by odds ratio and 95% confidence interval (OR and 95% CI) values. A total of eight articles were included in the study. A total of 517 gastric cancer tissue samples and 517 adjacent nontumor tissue samples were included. The results of the analysis showed that RASSF2 had a significantly higher level of methylation in gastric cancer (OR = 17.56, 95% CI = 7.11-43.35, p-value = 0.009). Meanwhile, we tested whether there was association of RASSF2 methylation with tumor metastasis, and we also analyzed whether there was a gender difference in RASSF2 methylation. However, our results showed no statistical significance of the two aforementioned tests (p > 0.1). Our study suggested that RASSF2 methylation could predict the risk of gastric cancer. However, it might not be feasible for the prediction of tumor metastasis.
Collapse
Affiliation(s)
- Kena Zhou
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Gastroenterology Department, Ningbo No. 9 Hospital, Ningbo, Zhejiang, China
| | - Congbo Cai
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Yi He
- Gastroenterology Department, Ningbo No. 9 Hospital, Ningbo, Zhejiang, China
| | - Cong Zhou
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shuangying Zhao
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoyun Ding
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Gastroenterology Department, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Shiwei Duan
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Liu C, Fennell LJ, Bettington ML, Walker NI, Dwine J, Leggett BA, Whitehall VLJ. DNA methylation changes that precede onset of dysplasia in advanced sessile serrated adenomas. Clin Epigenetics 2019; 11:90. [PMID: 31200767 PMCID: PMC6570920 DOI: 10.1186/s13148-019-0691-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Sessile serrated adenomas (SSAs) are common polyps which give rise to 20–30% of colorectal cancer (CRC). SSAs display clinicopathologic features which present challenges in surveillance, including overrepresentation in young patients, proclivity for the proximal colon and rarity of histologic dysplasia (referred to then as SSAs with dysplasia, SSADs). Once dysplasia develops, there is rapid progression to CRC, even at a small size. There is therefore a clinical need to separate the “advanced” SSAs at high risk of progression to SSAD and cancer from ordinary SSAs. Since SSAs are known to accumulate methylation over time prior to the development of dysplasia, SSAD backgrounds (the remnant SSA present within an SSAD) likely harbour additional methylation events compared with ordinary SSAs. We therefore performed MethyLight and comprehensive methylation array (Illumina MethylationEPIC) on 40 SSAD backgrounds and 40 matched ordinary SSAs, and compared the methylation results with CRC methylation, CRC expression and immunohistochemical data. Results SSAD backgrounds demonstrated significant hypermethylation of CpG islands compared with ordinary SSAs, and the proportion of hypermethylated probes decreased progressively in the shore, shelf and open sea regions. Hypomethylation occurred in concert with hypermethylation, which showed a reverse pattern, increasing progressively away from the island regions. These methylation changes were also identified in BRAF-mutant hypermethylated CRCs. When compared with CRC expression data, SV2B, MLH1/EPM2AIP1, C16orf62, RCOR3, BAIAP3, OGDHL, HDHD3 and ATP1B2 demonstrated both promoter hypermethylation and decreased expression. Although SSAD backgrounds were histologically indistinguishable from ordinary SSAs, MLH1 methylation was detectable via MethyLight in 62.9% of SSAD backgrounds, and focal immunohistochemical MLH1 loss was seen in 52.5% of SSAD backgrounds. Conclusions Significant hyper- and hypomethylation events occur during SSA progression well before the development of histologically identifiable changes. Methylation is a heterogeneous process within individual SSAs, as typified by MLH1, where both MLH1 methylation and focal immunohistochemical MLH1 loss can be seen in the absence of dysplasia. This heterogeneity is likely a generalised phenomenon and should be taken into account in future methylation-based studies and the development of clinical methylation panels. Electronic supplementary material The online version of this article (10.1186/s13148-019-0691-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Liu
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia. .,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia. .,Envoi Specialist Pathologists, Brisbane, QLD, Australia.
| | - Lochlan J Fennell
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Mark L Bettington
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Envoi Specialist Pathologists, Brisbane, QLD, Australia
| | - Neal I Walker
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Envoi Specialist Pathologists, Brisbane, QLD, Australia
| | - Joel Dwine
- Envoi Specialist Pathologists, Brisbane, QLD, Australia
| | - Barbara A Leggett
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,The Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Vicki L J Whitehall
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Department of Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Travaglino A, D'Armiento FP, Cassese G, Campanino MR, Borrelli G, Pignatiello S, Luglio G, Maione F, De Palma GD, D'Armiento M. Clinicopathological factors associated with BRAF-V600E mutation in colorectal serrated adenomas. Histopathology 2019; 75:160-173. [PMID: 30815911 DOI: 10.1111/his.13846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Serrated adenomas are genetically heterogeneous, and the histological classification into sessile serrated (SSA) adenoma and traditional serrated adenoma (TSA) does not reflect the molecular landscape. The objective of this study was to assess clinical or pathological factors associated with BRAF-V600E mutation in serrated adenomas. Systematic review and meta-analysis was performed by searching electronic databases from January 2011 to January 2019 for studies assessing the association of BRAF-V600E mutation with clinical or pathological features of serrated adenomas. Odds ratio (OR) was calculated for each factor; a P-value <0.05 was considered significant. Forty studies assessing 3511 serrated adenomas (2375 SSAs and 1136 TSAs) were included. BRAF-V600E mutation was significantly associated with proximal localisation (OR = 2.71; P < 0.00001) and CIMP-H status (OR = 4.81; P < 0.0001) in both SSA and TSA, with polyp size <10 mm (OR = 0.41; P = 0.02) in TSA, and with endoscopic pit pattern II-O (OR = 13.11; P < 0.00001) and expression of MUC5A5 (OR = 4.43; P = 0.003) and MUC6 (OR = 2.28; P < 0.05) in SSA. Conversely, BRAF mutation was not associated with age <70 years (OR = 1.63; P = 0.34), age <60 years (OR = 0.86; P = 0.79), female sex (OR = 0.77; P = 0.12), flat morphology (OR = 1.52; P = 0.16), presence of any dysplasia (OR = 1.01; P = 0.59), serrated dysplasia (OR = 1.23; P = 0.72) and invasive cancer (OR = 0.67; P = 0.32), nuclear β-catenin expression (OR = 0.73; P = 0.21) and p53 overexpression (OR = 1.24; P = 0.82). In conclusion, BRAF-V600E mutation is associated with proximal localisation and CIMP-H status in both SSA and TSA, with size <10 mm only in TSA, and with expression of MUC5A5 and MUC6 and endoscopic pit pattern II-O at least in SSA. In serrated adenomas, BRAF-V600E mutation does not seem to be associated with age and sex, with the prevalence of dysplasia and cancer and with the morphology of the dysplastic component.
Collapse
Affiliation(s)
- Antonio Travaglino
- Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco P D'Armiento
- Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Gianluca Cassese
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria R Campanino
- Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giorgio Borrelli
- Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Sara Pignatiello
- Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Gaetano Luglio
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Maione
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giovanni D De Palma
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria D'Armiento
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
De Maio G, Zama E, Rengucci C, Calistri D. What influences preneoplastic colorectal lesion recurrence? Oncotarget 2017; 8:12406-12416. [PMID: 27902488 PMCID: PMC5355354 DOI: 10.18632/oncotarget.13628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/15/2016] [Indexed: 12/16/2022] Open
Abstract
The hypothesis of the local recurrence of preneoplastic lesions was first put forward in the 1950s. Disease recurrence may result from an inherent imbalance in cell proliferation that promotes carcinogenesis in apparently normal mucosa. Our review sheds light on how early preneoplastic lesions could be used to diagnose relapsed preneoplastic and, developing neoplastic lesions. We focus in detail on the clinical-pathological and molecular features of adenoma subtypes and their role in relapsed adenoma and their development into colorectal carcinoma. Moreover, we include the data available on microbiota and its metabolites and their role in recurrence. We strongly believe that a significant improvement could be achieved in colorectal screening by introducing personalized endoscopic surveillance for polyp-bearing patients on the basis of the presence of molecular markers that are predictive of recurrence.
Collapse
Affiliation(s)
- Giulia De Maio
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola (FC), Italy
| | - Elisa Zama
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola (FC), Italy
| | - Claudia Rengucci
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola (FC), Italy
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola (FC), Italy
| |
Collapse
|
9
|
Mitsuhashi K, Yamamoto I, Kurihara H, Kanno S, Ito M, Igarashi H, Ishigami K, Sukawa Y, Tachibana M, Takahashi H, Tokino T, Maruyama R, Suzuki H, Imai K, Shinomura Y, Yamamoto H, Nosho K. Analysis of the molecular features of rectal carcinoid tumors to identify new biomarkers that predict biological malignancy. Oncotarget 2016; 6:22114-25. [PMID: 26090613 PMCID: PMC4673150 DOI: 10.18632/oncotarget.4294] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023] Open
Abstract
Although gastrointestinal carcinoid tumors are relatively rare in the digestive tract, a quarter of them are present in the rectum. In the absence of specific tumor biomarkers, lymphatic or vascular invasion is generally used to predict the risk of lymph node metastasis. We, therefore, examined the genetic and epigenetic alterations potentially associated with lymphovascular invasion among 56 patients with rectal carcinoid tumors. We also conducted a microRNA (miRNA) array analysis. Our analysis failed to detect mutations in BRAF, KRAS, NRAS, or PIK3CA or any microsatellite instability (MSI); however, we did observe CpG island methylator phenotype (CIMP) positivity in 13% (7/56) of the carcinoid tumors. The CIMP-positive status was significantly correlated with lymphovascular invasion (P = 0.036). The array analysis revealed that microRNA-885 (miR-885)-5p was the most up-regulated miRNA in the carcinoid tumors with lymphovascular invasion compared with that in those without invasion. In addition, high miR-885-5p expression was independently associated with lymphovascular invasion (P = 0.0002). In conclusion, our findings suggest that miR-885-5p and CIMP status may be useful biomarkers for predicting biological malignancy in patients with rectal carcinoid tumors.
Collapse
Affiliation(s)
- Kei Mitsuhashi
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Itaru Yamamoto
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroyoshi Kurihara
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Kanno
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Miki Ito
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisayoshi Igarashi
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keisuke Ishigami
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasutaka Sukawa
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mami Tachibana
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroaki Takahashi
- Department of Gastroenterology, Keiyukai Daini Hospital, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohzoh Imai
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhisa Shinomura
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroyuki Yamamoto
- Department of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
10
|
Nosho K, Sukawa Y, Adachi Y, Ito M, Mitsuhashi K, Kurihara H, Kanno S, Yamamoto I, Ishigami K, Igarashi H, Maruyama R, Imai K, Yamamoto H, Shinomura Y. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 2016; 22:557-566. [PMID: 26811607 PMCID: PMC4716059 DOI: 10.3748/wjg.v22.i2.557] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/25/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
The human intestinal microbiome plays a major role in human health and diseases, including colorectal cancer. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alterations, influenced by diet, environmental and microbial exposures, and host immunity. Fusobacterium species are part of the human oral and intestinal microbiota. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue. Using 511 colorectal carcinomas from Japanese patients, we assessed the presence of F. nucleatum. Our results showed that the frequency of F. nucleatum positivity in the Japanese colorectal cancer was 8.6% (44/511), which was lower than that in United States cohort studies (13%). Similar to the United States studies, F. nucleatum positivity in Japanese colorectal cancers was significantly associated with microsatellite instability (MSI)-high status. Regarding the immune response in colorectal cancer, high levels of infiltrating T-cell subsets (i.e., CD3+, CD8+, CD45RO+, and FOXP3+ cells) have been associated with better patient prognosis. There is also evidence to indicate that molecular features of colorectal cancer, especially MSI, influence T-cell-mediated adaptive immunity. Concerning the association between the gut microbiome and immunity, F. nucleatum has been shown to expand myeloid-derived immune cells, which inhibit T-cell proliferation and induce T-cell apoptosis in colorectal cancer. This finding indicates that F. nucleatum possesses immunosuppressive activities by inhibiting human T-cell responses. Certain microRNAs are induced during the macrophage inflammatory response and have the ability to regulate host-cell responses to pathogens. MicroRNA-21 increases the levels of IL-10 and prostaglandin E2, which suppress antitumor T-cell-mediated adaptive immunity through the inhibition of the antigen-presenting capacities of dendritic cells and T-cell proliferation in colorectal cancer cells. Thus, emerging evidence may provide insights for strategies to target microbiota, immune cells and tumor molecular alterations for colorectal cancer prevention and treatment. Further investigation is needed to clarify the association of Fusobacterium with T-cells and microRNA expressions in colorectal cancer.
Collapse
|