1
|
Kim HB, Hong YJ, Lee SH, Kee HJ, Kim M, Ahn Y, Jeong MH. Gallic Acid Inhibits Proliferation and Migration of Smooth Muscle Cells in a Pig In-Stent Restenosis Model. Chonnam Med J 2024; 60:32-39. [PMID: 38304132 PMCID: PMC10828086 DOI: 10.4068/cmj.2024.60.1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
In-stent restenosis (ISR) develops primarily due to neointimal hyperplasia. Gallic acid (GA) has anti-inflammatory, antioxidant, and cardioprotective effects. This study sought to investigate the effects of GA on neointimal hyperplasia and proliferation and migration of vascular smooth muscle cells (VSMCs) in a pig ISR model. In vitro proliferation and migration experiments were confirmed, after VSMCs were treated with platelet-derived growth factor (PDGF-BB) and GA (100 µM) using a 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay and a scratch wound assay for 24 hours and 48 hours. A bare metal stent (BMS) was implanted in the pig coronary artery to induce ISR with overdilation (1.1-1.2:1), and GA (10 mg/kg/day) was administered for 4 weeks. At the 4-week follow-up, optical coherence tomography (OCT) and histopathological analyses were performed. GA decreased the proliferation of VSMCs by PDGF-BB for 24 hours (89.24±24.56% vs. 170.04±19.98%, p<0.001) and 48 hours (124.87±7.35% vs. 187.64±4.83%, p<0.001). GA inhibited the migration of VSMCs induced by PDGF-BB for 24 hours (26.73±2.38% vs. 65.38±9.73%, p<0.001) and 48 hours (32.96±3.04% vs. 77.04±10.07%, p<0.001). Using OCT, % neointimal hyperplasia was shown to have significantly decreased in the GA group compared with control vehicle group (28.25±10.07% vs. 37.60±10.84%, p<0.001). GA effectively reduced neointimal hyperplasia by inhibiting the proliferation and migration of VSMCs in a pig ISR model. GA could be a potential treatment strategy for reducing ISR after stent implantation.
Collapse
Affiliation(s)
- Han Byul Kim
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Young Joon Hong
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung Hun Lee
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Munki Kim
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ho Jeong
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
2
|
Kurt-Celep İ, Nihan Kilinc A, Griffin M, Telci D. Nitrosylation of Tissue Transglutaminase enhances fibroblast migration and regulates MMP activation. Matrix Biol 2021; 105:1-16. [PMID: 34763097 DOI: 10.1016/j.matbio.2021.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
In wound healing, the TG2 enzyme plays a dual functional role. TG2 has been shown to regulate extracellular matrix (ECM) stabilization by its transamidase activity while increasing cell migration by acting as a cell adhesion molecule. In this process, nitric oxide (NO) plays a particularly important role by nitrosylation of free cysteine residues on TG2, leading to the irreversible inactivation of the catalytic activity. In this study, transfected fibroblasts expressing TG2 under the control of the tetracycline-off promoter were treated with NO donor s-nitroso-n-acetyl penicillamine (SNAP) to analyze the interplay between NO and TG2 in the regulation of cell migration/invasion as well as TGF-β1-dependent MMP activation. Our results demonstrated that inhibition of TG2 cross-linking activity by SNAP promoted the migration and invasion capacity of fibroblasts by hindering TG2-mediated TGF-β1 activation. While the inhibition of TG2 activity by NO downregulated the biosynthesis and activity of MMP-2 and MMP-9, that of MMP-1a and MMP-13 shown to be upregulated in a TGF-β1-dependent manner under the same conditions. In the presence of SNAP, interaction of TG2 with its cell surface binding partners Integrin-β1 and Syndecan-4 was reduced, which was paralleled by an increase in TG2 and PDGF association. These findings suggests that migratory phenotype of fibroblasts can be regulated by the interplay between nitric oxide and TG2 activity.
Collapse
Affiliation(s)
- İnci Kurt-Celep
- Department of Genetics and Bioengineering, Yeditepe University, 26 August Campus, Kayisdagi, Atasehir, Istanbul 34755, Turkey
| | - Ayse Nihan Kilinc
- Department of Genetics and Bioengineering, Yeditepe University, 26 August Campus, Kayisdagi, Atasehir, Istanbul 34755, Turkey; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Dilek Telci
- Department of Genetics and Bioengineering, Yeditepe University, 26 August Campus, Kayisdagi, Atasehir, Istanbul 34755, Turkey.
| |
Collapse
|
3
|
Maffei B, Laverrière M, Wu Y, Triboulet S, Perrinet S, Duchateau M, Matondo M, Hollis RL, Gourley C, Rupp J, Keillor JW, Subtil A. Infection-driven activation of transglutaminase 2 boosts glucose uptake and hexosamine biosynthesis in epithelial cells. EMBO J 2020; 39:e102166. [PMID: 32134139 DOI: 10.15252/embj.2019102166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme with transamidating activity. We report here that both expression and activity of TG2 are enhanced in mammalian epithelial cells infected with the obligate intracellular bacteria Chlamydia trachomatis. Genetic or pharmacological inhibition of TG2 impairs bacterial development. We show that TG2 increases glucose import by up-regulating the transcription of the glucose transporter genes GLUT-1 and GLUT-3. Furthermore, TG2 activation drives one specific glucose-dependent pathway in the host, i.e., hexosamine biosynthesis. Mechanistically, we identify the glucosamine:fructose-6-phosphate amidotransferase (GFPT) among the substrates of TG2. GFPT modification by TG2 increases its enzymatic activity, resulting in higher levels of UDP-N-acetylglucosamine biosynthesis and protein O-GlcNAcylation. The correlation between TG2 transamidating activity and O-GlcNAcylation is disrupted in infected cells because host hexosamine biosynthesis is being exploited by the bacteria, in particular to assist their division. In conclusion, our work establishes TG2 as a key player in controlling glucose-derived metabolic pathways in mammalian cells, themselves hijacked by C. trachomatis to sustain their own metabolic needs.
Collapse
Affiliation(s)
- Benoit Maffei
- Unité de Biologie cellulaire de l'infection microbienne, CNRS UMR3691, Institut Pasteur, Paris, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Marc Laverrière
- Unité de Biologie cellulaire de l'infection microbienne, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Yongzheng Wu
- Unité de Biologie cellulaire de l'infection microbienne, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Sébastien Triboulet
- Unité de Biologie cellulaire de l'infection microbienne, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Stéphanie Perrinet
- Unité de Biologie cellulaire de l'infection microbienne, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Magalie Duchateau
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, USR 2000 CNRS, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, USR 2000 CNRS, Institut Pasteur, Paris, France
| | - Robert L Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, MRC IGMM, University of Edinburgh, Edinburgh, UK
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, MRC IGMM, University of Edinburgh, Edinburgh, UK
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Agathe Subtil
- Unité de Biologie cellulaire de l'infection microbienne, CNRS UMR3691, Institut Pasteur, Paris, France
| |
Collapse
|
4
|
Kim MY, Park JY, Park HS. Akt1-Mediated Phosphorylation of RBP-Jk Controls Notch1 Signaling. BIOCHEMISTRY (MOSCOW) 2020; 84:1537-1546. [PMID: 31870258 DOI: 10.1134/s0006297919120137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Notch1 signaling pathway plays a crucial role in determining cell fate, including cell growth and differentiation. In this study, we demonstrated that the antagonistic action of RTK (receptor tyrosine kinase) signaling pathway on the Notch1 signaling pathway is mediated via Ras-PI3K-Akt1. The PI3K-Akt1 signaling pathway was shown to inhibit Notch1 signaling via phosphorylation of RBP-Jk. We observed not only reduced association between Notch1 and RBP-Jk, but also suppression of the Notch1 transcriptional activity. Our results demonstrated that Akt1 functions as a natural inhibitor of the Notch1 signaling pathway via phosphorylation of RBP-Jk.
Collapse
Affiliation(s)
- M-Y Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - J Y Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - H-S Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
5
|
Serrano RL, Yu W, Graham RM, Bryan RL, Terkeltaub R. A vascular smooth muscle cell X-box binding protein 1 and transglutaminase 2 regulatory circuit limits neointimal hyperplasia. PLoS One 2019; 14:e0212235. [PMID: 30943188 PMCID: PMC6447169 DOI: 10.1371/journal.pone.0212235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Neointimal hyperplasia, stimulated by injury and certain vascular diseases, promotes artery obstruction and tissue ischemia. In vascular smooth muscle cell (VSMCs), multiple modulators of protein handling machinery regulate intimal hyperplasia. These include elements of the VSMC unfolded protein response to endoplasmic reticulum stress (UPRER), and transglutaminase 2 (TG2), which catalyzes post-translational protein modification. Previous results for deficiency of UPRER-specific mediator XBP1, and of TG2, have been significant, but in multiple instances contradictory, for effects on cultured VSMC function, and, using multiple models, for neointimal hyperplasia in vivo. Here, we engineered VSMC-specific deficiency of XBP1, and studied cultured VSMCs, and neointimal hyperplasia in response to carotid artery ligation in vivo. Intimal area almost doubled in Xbp1fl/fl SM22α-CRE+ mice 21 days post-ligation. Cultured murine Xbp1 deficient VSMCs migrated more in response to platelet derived growth factor (PDGF) than control VSMCs, and had an increased level of inositol-requiring enzyme 1α (Ire1α), a PDGF receptor-binding UPRER transmembrane endonuclease whose substrates include XBP1. Cultured XBP1-deficient VSMCs demonstrated decreased levels of TG2 protein, in association with increased TG2 polyubiquitination, but with increased TG transamidation catalytic activity. Moreover, IRE1α, and TG2-specific transamidation cross-links were increased in carotid artery neointima in Xbp1fl/fl SM22α-CRE+ mice. Cultured TG2-deficient VSMCs had decreased XBP1 associated with increased IRE1α, and increased migration in response to PDGF. Neointimal hyperplasia also was significantly increased in Tgm2fl/fl SM22α-CRE+ mice at 21 days after carotid ligation. In conclusion, a VSMC regulatory circuit between XBP1 and TG2 limits neointimal hyperplasia in response to carotid ligation.
Collapse
Affiliation(s)
- Ramon L. Serrano
- Department of Medicine, Veterans Affairs Healthcare System, University of California San Diego, California, United States of America
| | - Weifang Yu
- Department of Medicine, Veterans Affairs Healthcare System, University of California San Diego, California, United States of America
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Ru Liu- Bryan
- Department of Medicine, Veterans Affairs Healthcare System, University of California San Diego, California, United States of America
| | - Robert Terkeltaub
- Department of Medicine, Veterans Affairs Healthcare System, University of California San Diego, California, United States of America
| |
Collapse
|
6
|
Lin H, Ni T, Zhang J, Meng L, Gao F, Pan S, Luo H, Xu F, Ru G, Chi J, Guo H. Knockdown of Herp alleviates hyperhomocysteinemia mediated atherosclerosis through the inhibition of vascular smooth muscle cell phenotype switching. Int J Cardiol 2018; 269:242-249. [PMID: 30017525 DOI: 10.1016/j.ijcard.2018.07.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. We aimed to investigate whether Homocysteine-responsive endoplasmic reticulum protein (Herp) was involved in VSMC phenotypic switching and affected atheroprogression. METHODS To assess the role of Herp in homocysteine (Hcy)-associated atherosclerosis, Herp-/- and LDLR-/- double knockout mice were generated and fed with a high methionine diet (HMD) to induce Hyperhomocysteinemia (HHcy). Atherosclerotic lesions, cholesterol homeostasis, endoplasmic reticulum (ER) stress activation, and the phenotype of VSMCs were assessed in vivo. We used siRNAs to knockdown Herp in cultured VSMCs to further validate our findings in vitro. RESULTS HMD significantly activated the activating transcription factor 6 (ATF6)/Herp arm of ER stress in LDLR-/- mice, and induced the phenotypic switch of VSMCs, with the loss of contractile proteins (SMA and calponin) and an increase of OPN protein. Herp-/-/LDLR-/- mice developed reduced atherosclerotic lesions in the aortic sinus and the whole aorta when compared with LDLR-/- mice. However, Herp deficiency had no effect on diet-induced HHcy and hyperlipidemia. Inhibition of VSMC phenotypic switching, decreased proliferation and collagen accumulation were observed in Herp-/-/LDLR-/- mice when compared with LDLR-/- mice. In vitro experiments demonstrated that Hcy caused VSMC phenotypic switching, promoted cell proliferation and migration; this was reversed by Herp depletion. We achieved similar results via inhibition of ER stress using 4-phenylbutyric-acid (4-PBA) in Hcy-treated VSMCs. CONCLUSION Herp deficiency inhibits the phenotypic switch of VSMCs and the development of atherosclerosis, thus providing novel insights into the role of Herp in atherogenesis.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Sunlei Pan
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Fukang Xu
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Guomei Ru
- Medical Research Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
7
|
Riascos-Bernal DF, Chinnasamy P, Gross JN, Almonte V, Egaña-Gorroño L, Parikh D, Jayakumar S, Guo L, Sibinga NES. Inhibition of Smooth Muscle β-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol 2017; 37:879-888. [PMID: 28302627 DOI: 10.1161/atvbaha.116.308643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Smooth muscle cells (SMCs) contribute to neointima formation after vascular injury. Although β-catenin expression is induced after injury, whether its function is essential in SMCs for neointimal growth is unknown. Moreover, although inhibitors of β-catenin have been developed, their effects on SMC growth have not been tested. We assessed the requirement for SMC β-catenin in short-term vascular homeostasis and in response to arterial injury and investigated the effects of β-catenin inhibitors on vascular SMC growth. APPROACH AND RESULTS We used an inducible, conditional genetic deletion of β-catenin in SMCs of adult mice. Uninjured arteries from adult mice lacking SMC β-catenin were indistinguishable from controls in terms of structure and SMC marker gene expression. After carotid artery ligation, however, vessels from mice lacking SMC β-catenin developed smaller neointimas, with lower neointimal cell proliferation and increased apoptosis. SMCs lacking β-catenin showed decreased mRNA expression of Mmp2, Mmp9, Sphk1, and S1pr1 (genes that promote neointima formation), higher levels of Jag1 and Gja1 (genes that inhibit neointima formation), decreased Mmp2 protein expression and secretion, and reduced cell invasion in vitro. Moreover, β-catenin inhibitors PKF118-310 and ICG-001 limited growth of mouse and human vascular SMCs in a dose-dependent manner. CONCLUSIONS SMC β-catenin is dispensable for maintenance of the structure and state of differentiation of uninjured adult arteries, but is required for neointima formation after vascular injury. Pharmacological β-catenin inhibitors hinder growth of human vascular SMCs. Thus, inhibiting β-catenin has potential as a therapy to limit SMC accumulation and vascular obstruction.
Collapse
Affiliation(s)
- Dario F Riascos-Bernal
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY (D.F.R.-B., P.C., J.N.G., V.A., L.E.-G., D.P., S.J., N.E.S.S.); and CVPath Institute, Gaithersburg, MD (L.G.)
| | - Prameladevi Chinnasamy
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY (D.F.R.-B., P.C., J.N.G., V.A., L.E.-G., D.P., S.J., N.E.S.S.); and CVPath Institute, Gaithersburg, MD (L.G.)
| | - Jordana N Gross
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY (D.F.R.-B., P.C., J.N.G., V.A., L.E.-G., D.P., S.J., N.E.S.S.); and CVPath Institute, Gaithersburg, MD (L.G.)
| | - Vanessa Almonte
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY (D.F.R.-B., P.C., J.N.G., V.A., L.E.-G., D.P., S.J., N.E.S.S.); and CVPath Institute, Gaithersburg, MD (L.G.)
| | - Lander Egaña-Gorroño
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY (D.F.R.-B., P.C., J.N.G., V.A., L.E.-G., D.P., S.J., N.E.S.S.); and CVPath Institute, Gaithersburg, MD (L.G.)
| | - Dippal Parikh
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY (D.F.R.-B., P.C., J.N.G., V.A., L.E.-G., D.P., S.J., N.E.S.S.); and CVPath Institute, Gaithersburg, MD (L.G.)
| | - Smitha Jayakumar
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY (D.F.R.-B., P.C., J.N.G., V.A., L.E.-G., D.P., S.J., N.E.S.S.); and CVPath Institute, Gaithersburg, MD (L.G.)
| | - Liang Guo
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY (D.F.R.-B., P.C., J.N.G., V.A., L.E.-G., D.P., S.J., N.E.S.S.); and CVPath Institute, Gaithersburg, MD (L.G.)
| | - Nicholas E S Sibinga
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY (D.F.R.-B., P.C., J.N.G., V.A., L.E.-G., D.P., S.J., N.E.S.S.); and CVPath Institute, Gaithersburg, MD (L.G.).
| |
Collapse
|
8
|
Steppan J, Bergman Y, Viegas K, Armstrong D, Tan S, Wang H, Melucci S, Hori D, Park SY, Barreto SF, Isak A, Jandu S, Flavahan N, Butlin M, An SS, Avolio A, Berkowitz DE, Halushka MK, Santhanam L. Tissue Transglutaminase Modulates Vascular Stiffness and Function Through Crosslinking-Dependent and Crosslinking-Independent Functions. J Am Heart Assoc 2017; 6:JAHA.116.004161. [PMID: 28159817 PMCID: PMC5523743 DOI: 10.1161/jaha.116.004161] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background The structural elements of the vascular wall, namely, extracellular matrix and smooth muscle cells (SMCs), contribute to the overall stiffness of the vessel. In this study, we examined the crosslinking‐dependent and crosslinking‐independent roles of tissue transglutaminase (TG2) in vascular function and stiffness. Methods and Results SMCs were isolated from the aortae of TG2−/− and wild‐type (WT) mice. Cell adhesion was examined by using electrical cell–substrate impedance sensing and PicoGreen assay. Cell motility was examined using a Boyden chamber assay. Cell proliferation was examined by electrical cell–substrate impedance sensing and EdU incorporation assays. Cell micromechanics were studied using magnetic torsion cytometry and spontaneous nanobead tracer motions. Aortic mechanics were examined by tensile testing. Vasoreactivity was studied by wire myography. SMCs from TG2−/− mice had delayed adhesion, reduced motility, and accelerated de‐adhesion and proliferation rates compared with those from WT. TG2−/− SMCs were stiffer and displayed fewer cytoskeletal remodeling events than WT. Collagen assembly was delayed in TG2−/− SMCs and recovered with adenoviral transduction of TG2. Aortic rings from TG2−/− mice were less stiff than those from WT; stiffness was partly recovered by incubation with guinea pig liver TG2 independent of crosslinking function. TG2−/− rings showed augmented response to phenylephrine‐mediated vasoconstriction when compared with WT. In human coronary arteries, vascular media and plaque, high abundance of fibronectin expression, and colocalization with TG2 were observed. Conclusions TG2 modulates vascular function/tone by altering SMC contractility independent of its crosslinking function and contributes to vascular stiffness by regulating SMC proliferation and matrix remodeling.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Yehudit Bergman
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Kayla Viegas
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Dinani Armstrong
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Siqi Tan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Sean Melucci
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Daijiro Hori
- Department of Surgery, Johns Hopkins University, Baltimore, MD
| | - Sung Yong Park
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD.,Department of Anesthesiology, Yonsei University, Seoul, Korea
| | - Sebastian F Barreto
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Abraham Isak
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD
| | - Sandeep Jandu
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Nicholas Flavahan
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Mark Butlin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Steven S An
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD
| | - Alberto Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Dan E Berkowitz
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University, Baltimore, MD
| | - Lakshmi Santhanam
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
9
|
Huang C, Mei H, Zhou M, Zheng X. A novel PDGF receptor inhibitor-eluting stent attenuates in-stent neointima formation in a rabbit carotid model. Mol Med Rep 2016; 15:21-28. [PMID: 27922693 PMCID: PMC5355735 DOI: 10.3892/mmr.2016.5986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 07/20/2016] [Indexed: 11/06/2022] Open
Abstract
A novel drug-eluting stent (DES) is required to target vascular smooth muscle cells (SMCs) without harming endothelial cells (ECs). Platelet-derived growth factor (PDGF) is critical for the proliferation and migration of SMCs. Sunitinib [a PDGF receptor (PDGFR) tyrosine kinase inhibitor]‑eluting stents may therefore inhibit neointimal formation. The aim of the present study was to examine the stent‑based delivery of sunitinib in a rabbit carotid model; in addition, the effects of sunitinib were evaluated in vitro. Local administration of sunitinib markedly reduced neointimal formation without delaying re-endothelialization in the carotid artery model. In vitro, sunitinib inhibited SMC proliferation; however, no effects were observed on ECs. Sunitinib caused necrosis of SMCs. In addition, sunitinib attenuated PDGF-stimulated SMC migration in a scratch wound assay and inhibited α‑SMA cytoskeleton polymerization. Furthermore, sunitinib inhibited PDGF-induced phosphorylation of extracellular signal-regulated kinase in vitro and in vivo. Therefore, this novel DES may be a potential strategy for the treatment of vascular disorders.
Collapse
Affiliation(s)
- Chen Huang
- Division of Vascular Surgery, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haijun Mei
- Division of Vascular Surgery, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaobing Zheng
- Division of Vascular Surgery, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
10
|
Sharma VK, Singh A, Srivastava SK, Kumar V, Gardi NL, Nalwa A, Dinda AK, Chattopadhyay P, Yadav S. Increased expression of platelet-derived growth factor associated protein-1 is associated with PDGF-B mediated glioma progression. Int J Biochem Cell Biol 2016; 78:194-205. [PMID: 27448842 DOI: 10.1016/j.biocel.2016.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022]
Abstract
The current treatment therapies available for malignant gliomas are inadequate. There is an urgent need to develop more effective therapies by characterizing the molecular pathogenesis of the disease. Over expression of platelet-derived growth factor (PDGF) ligands and receptors have been reported in malignant gliomas. Platelet-derived growth factor associated protein-1 (PDAP-1) is reported to modulate the mitogenic activity of PDGF ligands, but to date, there is no information concerning its role in PDGF-mediated glioma cell proliferation. This study aimed to characterize the role of PDAP-1 in PDGF-mediated glioma proliferation. The expression of PDAP-1 was observed to be significantly increased (p<0.05) in grade IV glioma tissue and cell lines compared to grade III. siRNA-mediated knockdown of PDAP-1 reduced the expression of PDGF-B and its downstream genes (Akt1/Protein kinase B (PKB) and phosphoinositide-dependent kinase-1 (PDK1) by up to 50%. In PDAP-1 knockdown glioma cells, more than a twofold reduction was also observed in the level of phosphorylated Akt. Interestingly, knockdown of PDAP-1 in combination with PDGF-B antibody inhibited glioma cell proliferation through activation of Caspase 3/7 and 9. We also demonstrate that PDAP-1 co-localizes with PDGF-B in the cytoplasm of glioma cells, and an interaction between both of the proteins was established. Collectively, these findings suggest that the expression of PDAP-1 is associated with disease malignancy, and its inhibition reduced the proliferation of malignant glioma cells through down-regulation of PDGF-B/Akt/PDK1 signaling. Thus, this study establishes PDAP-1 as an effecter of PDGF signaling in glioma cells and suggests that it could also be a promising therapeutic target.
Collapse
Affiliation(s)
- Vinay Kumar Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anand Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Vignesh Kumar
- Proteomics and Structural Biology Unit, Institute of genomics and Integrative Biology, New Delhi 110025, India
| | - Nilesh Laxman Gardi
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Aasma Nalwa
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
11
|
Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4. Exp Cell Res 2016; 345:82-92. [DOI: 10.1016/j.yexcr.2016.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/11/2016] [Accepted: 05/15/2016] [Indexed: 12/31/2022]
|