1
|
Lu S, Sun X, Zhou Z, Tang H, Xiao R, Lv Q, Wang B, Qu J, Yu J, Sun F, Deng Z, Tian Y, Li C, Yang Z, Yang P, Rao B. Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation. Front Immunol 2023; 14:1235575. [PMID: 37799727 PMCID: PMC10548240 DOI: 10.3389/fimmu.2023.1235575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Objective Bazhen Decoction (BZD) is a common adjuvant therapy drug for colorectal cancer (CRC), although its anti-tumor mechanism is unknown. This study aims to explore the core components, key targets, and potential mechanisms of BZD treatment for CRC. Methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP) was employed to acquire the BZD's active ingredient and targets. Meanwhile, the Drugbank, Therapeutic Target Database (TTD), DisGeNET, and GeneCards databases were used to retrieve pertinent targets for CRC. The Venn plot was used to obtain intersection targets. Cytoscape software was used to construct an "herb-ingredient-target" network and identify core targets. GO and KEGG pathway enrichment analyses were conducted using R language software. Molecular docking of key ingredients and core targets of drugs was accomplished using PyMol and Autodock Vina software. Cell and animal research confirmed Bazhen Decoction efficacy and mechanism in treating colorectal cancer. Results BZD comprises 173 effective active ingredients. Using four databases, 761 targets related to CRC were identified. The intersection of BZD and CRC yielded 98 targets, which were utilized to construct the "herb-ingredient-target" network. The four key effector components with the most targets were quercetin, kaempferol, licochalcone A, and naringenin. Protein-protein interaction (PPI) analysis revealed that the core targets of BZD in treating CRC were AKT1, MYC, CASP3, ESR1, EGFR, HIF-1A, VEGFR, JUN, INS, and STAT3. The findings from molecular docking suggest that the core ingredient exhibits favorable binding potential with the core target. Furthermore, the GO and KEGG enrichment analysis demonstrates that BZD can modulate multiple signaling pathways related to CRC, like the T cell receptor, PI3K-Akt, apoptosis, P53, and VEGF signaling pathway. In vitro, studies have shown that BZD dose-dependently inhibits colon cancer cell growth and invasion and promotes apoptosis. Animal experiments have shown that BZD treatment can reverse abnormal expression of PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53 genes. BZD also increases the ratio of CD4+ T cells to CD8+ T cells in the spleen and tumor tissues, boosting IFN-γ expression, essential for anti-tumor immunity. Furthermore, BZD has the potential to downregulate the PD-1 expression on T cell surfaces, indicating its ability to effectively restore T cell function by inhibiting immune checkpoints. The results of HE staining suggest that BZD exhibits favorable safety profiles. Conclusion BZD treats CRC through multiple components, targets, and metabolic pathways. BZD can reverse the abnormal expression of genes such as PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53, and suppresses the progression of colorectal cancer by regulating signaling pathways such as PI3K-AKT, P53, and VEGF. Furthermore, BZD can increase the number of T cells and promote T cell activation in tumor-bearing mice, enhancing the immune function against colorectal cancer. Among them, quercetin, kaempferol, licochalcone A, naringenin, and formaronetin are more highly predictive components related to the T cell activation in colorectal cancer mice. This study is of great significance for the development of novel anti-cancer drugs. It highlights the importance of network pharmacology-based approaches in studying complex traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Shuai Lu
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Xibo Sun
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Zhongbao Zhou
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Huazhen Tang
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Ruixue Xiao
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Qingchen Lv
- Medical Laboratory College, Hebei North University, Zhangjiakou, China
| | - Bing Wang
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxiu Qu
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxuan Yu
- First Clinical Medical College, Binzhou Medical University, Yantai, China
| | - Fang Sun
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhuoya Deng
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuying Tian
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Cong Li
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Zhenpeng Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Penghui Yang
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Benqiang Rao
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| |
Collapse
|
2
|
Felegyi-Tóth CA, Heilmann T, Buda E, Stipsicz B, Simon A, Boldizsár I, Bősze S, Riethmüller E, Alberti Á. Evaluation of the Chemical Stability, Membrane Permeability and Antiproliferative Activity of Cyclic Diarylheptanoids from European Hornbeam ( Carpinus betulus L.). Int J Mol Sci 2023; 24:13489. [PMID: 37686297 PMCID: PMC10488193 DOI: 10.3390/ijms241713489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Four cyclic diarylheptanoids-carpinontriols A (1) and B (2), giffonin X (3) and 3,12,17-trihydroxytricyclo [12.3.1.12,6]nonadeca-1(18),2(19),3,5,14,16-hexaene-8,11-dione (4)-were isolated from Carpinus betulus (Betulaceae). Chemical stability of the isolated diarylheptanoids was evaluated as a function of storage temperature (-15, 5, 22 °C) and time (12 and 23 weeks). The effect of the solvent and the pH (1.2, 6.8, 7.4) on the stability of these diarylheptanoids was also investigated. Compounds 2 and 4 showed good stability both in aqueous and methanolic solutions at all investigated temperatures. Only 2 was stable at all three studied biorelevant pH values. Degradation products of 1 and 3 were formed by the elimination of a water molecule from the parent compounds, as confirmed by ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HR-MS). The permeability of the compounds across biological membranes was evaluated by the parallel artificial membrane permeability assay (PAMPA). Compound 3 possesses a logPe value of -5.92 ± 0.04 in the blood-brain barrier-specific PAMPA-BBB study, indicating that it may be able to cross the blood-brain barrier via passive diffusion. The in vitro antiproliferative activity of the compounds was investigated against five human cancer cell lines, confirming that 1 inhibits cell proliferation in A2058 human metastatic melanoma cells.
Collapse
Affiliation(s)
- Csenge Anna Felegyi-Tóth
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| | - Tímea Heilmann
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| | - Eszter Buda
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| | - Bence Stipsicz
- Institute of Biology, Doctoral School of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary;
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary;
| | - Alexandra Simon
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| | - Imre Boldizsár
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary;
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Eszter Riethmüller
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| | - Ágnes Alberti
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (C.A.F.-T.); (T.H.); (E.B.); (A.S.); (I.B.); (E.R.)
| |
Collapse
|
3
|
Ahmad G, Khan SU, Mir SA, Iqbal MJ, Pottoo FH, Dhiman N, Malik F, Ali A. Myrica esculenta Buch.-Ham. (ex D. Don): A Review on its Phytochemistry, Pharmacology and Nutritional Potential. Comb Chem High Throughput Screen 2022; 25:2372-2386. [PMID: 36330658 DOI: 10.2174/1386207325666220428105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 01/27/2023]
Abstract
Myrica esculenta is an important ethnomedicinal plant used in the traditional system of medicine and as an important nutraceutical. Several studies on the plant justify its use in alternative systems of medicine and establish a scientific rationale for its possible therapeutic application. The plant contains a range of biologically active classes of compounds, particularly diarylheptanoids, flavonoids, terpenes, tannins, and glycosides. The nutraceutical potential of the plant can be particularly attributed to its fruit, and several studies have demonstrated the presence of carbohydrates, proteins, fats, fiber content, and minerals like sodium, potassium, calcium, manganese, iron, copper, and zinc, in it. The current review aims to provide complete insight into the phytochemistry, pharmacological potential, and nutritional potential of the plant, which would not only serve as a comprehensive source of information but also will highlight the scope of isolation and evaluation of these molecules for various disease conditions.
Collapse
Affiliation(s)
- Gazanfar Ahmad
- Amity Institute of Pharmacy, Amity University, Noida, UP 201301 India
| | - Sameer Ullah Khan
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sameer Ahmad Mir
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Mir Javid Iqbal
- Department of Pharmacy, Northeastern University, 360 Huntington Avenue-140TF, Boston, Massachusetts MA, 02115, USA
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Noida, UP 201301 India
| | - Fayaz Malik
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Asif Ali
- Natural Product Laboratory, CSIR-IIIM, Jammu, J&K 180001, India
| |
Collapse
|
4
|
Network pharmacology-based analysis of the mechanism of Guben Sanjie Pill in the treatment of lung cancer. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Wu X, Li W, Luo Z, Chen Y. The molecular mechanism of Ligusticum wallichii for improving idiopathic pulmonary fibrosis: A network pharmacology and molecular docking study. Medicine (Baltimore) 2022; 101:e28787. [PMID: 35147109 PMCID: PMC8830865 DOI: 10.1097/md.0000000000028787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND At present, there was no evidence that any drugs other than lung transplantation can effectively treat Idiopathic Pulmonary Fibrosis (IPF). Ligusticum wallichii, or Chinese name Chuan xiong has been widely used in different fibrosis fields. Our aim is to use network pharmacology and molecular docking to explore the pharmacological mechanism of the Traditional Chinese medicine (TCM) Ligusticum wallichii to improve IPF. MATERIALS AND METHODS The main chemical components and targets of Ligusticum wallichii were obtained from TCMSP, Swiss Target Prediction and Phammapper databases, and the targets were uniformly regulated in the Uniprot protein database after the combination. The main targets of IPF were obtained through Gencards, OMIM, TTD and DRUGBANK databases, and protein interaction analysis was carried out by using String to build PPI network. Metascape platform was used to analyze its involved biological processes and pathways, and Cytoscape3.8.2 software was used to construct "component-IPF target-pathway" network. And molecular docking verification was conducted through Auto Dock software. RESULTS The active ingredients of Ligusticum wallichii were Myricanone, Wallichilide, Perlolyrine, Senkyunone, Mandenol, Sitosterol and FA. The core targets for it to improve IPF were MAPK1, MAPK14, SRC, BCL2L1, MDM2, PTGS2, TGFB2, F2, MMP2, MMP9, and so on. The molecular docking verification showed that the molecular docking affinity of the core active compounds in Ligusticum wallichii (Myricanone, wallichilide, Perlolyrine) was <0 with MAPK1, MAPK14, and SRC. Perlolyrine has the strongest molecular docking ability, and its docking ability with SRC (-6.59 kJ/mol) is particularly prominent. Its biological pathway to improve IPF was mainly acted on the pathways in cancer, proteoglycans in cancer, and endocrine resistance, etc. CONCLUSIONS This study preliminarily identified the various molecular targets and multiple pathways of Ligusticum wallichii to improve IPF.
Collapse
|
6
|
Lu Y, Yin W, Alam MS, Kadi AA, Jahng Y, Kwon Y, Rahman AFMM. Synthesis, Biological Evaluation and Molecular Docking Study of Cyclic Diarylheptanoids as Potential Anticancer Therapeutics. Anticancer Agents Med Chem 2021; 20:464-475. [PMID: 31763968 DOI: 10.2174/1871520619666191125130237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of mortality globally. To cope with cancer, it is necessary to develop anticancer drugs. Bioactive natural products, i.e. diarylheptanoids, have gained significant attention of researchers owing to their intriguing structures and potent biological activities. In this article, considering the development of anticancer drugs with enhanced selectivity towards cancerous cells, a series of Cyclic Diarylheptanoids (CDHs) are designed, synthesized and evaluated their biological activity. OBJECTIVE To establish an easy route for the synthesis of diarylheptanoids, and evaluate their antiproliferative, and topoisomerase-I & -IIα inhibitory activities, for developing potential anticancer drugs among CDHs. METHODS Diarylheptanoids were synthesized from reported linear diarylheptanoids using the classical Ullmann reaction. Antibacterial activity was evaluated by the filter paper disc diffusion method. Cell viability was assessed by measuring mitochondrial dehydrogenase activity with a Cell Counting Kit (CCK-8). Topoisomerases I and II (topo-I and -IIα) inhibitory activity was measured by the assessment of relaxation of supercoiled pBR322 plasmid DNA. IFD protocol of Schrodinger Maestro v11.1 was used to characterize the binding pattern of studied compounds with the ATPase domain of the human topo-IIα. RESULTS The synthesized CDHs were evaluated for their biological activities (antibacterial, antiproliferative, and topoisomerase-I & -IIα inhibitory activities, respectively). Leading to obtain a series of anticancer agents with the least inhibitory activities against different microbes, improving their selectivity for cancer cells. In brief, most of the synthesized CDHs had excellent antiproliferative activity against T47D (human breast cancer cell line). Pterocarine possessed the strongest activity (2i; IC50 = 0.63µM) against T47D. The cyclic diarylheptanoid 2b induced 30% inhibition of topoisomerase-IIα activity at 100μM compared with the reference of etoposide, which induced 72% inhibition. Among the tested compounds, galeon (2h) displayed very low activity against four bacterial strains. Compounds 2b, 2h, and 2i formed hydrogen bonds with Thr215, Asn91, Asn120, Ala167, Lys168 and Ile141 residues, which are important for binding of ligand compound to the ATPase binding site of topoisomerase IIα by acting as ATP competitive molecule validated by docking study. In silico Absorption, Distribution, Metabolism and Excretion (ADME) analysis revealed the predicted ADME parameters of the studied compounds which showed recommended values. CONCLUSION A series of CDHs were synthesized and evaluated for their antibacterial, antiproliferative, and topo-I & -IIα inhibitory activities. SARs study, molecular docking study and in silico ADME analysis were conducted. Five compounds exhibited excellent and selective antiproliferative activity against the human breast cancer cell line (T47D). Among them, a compound 2h showed topo-IIα activity by 30% at 100µM, which represented a moderate intensity of inhibition compared with etoposide. Three of them formed hydrogen bonds with Thr215, Asn91, Asn120, and Ala167 residues, which are considered as crucial residues for binding to the ATPase domain of topoisomerase IIα. According to in silico drug-likeness property analysis, three compounds are expected to show superiority over etoposide in case of absorption, distribution, metabolism and excretion.
Collapse
Affiliation(s)
- Yang Lu
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Wencui Yin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad S Alam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yurngdong Jahng
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Phytochemicals with Added Value from Morella and Myrica Species. Molecules 2020; 25:molecules25246052. [PMID: 33371425 PMCID: PMC7767459 DOI: 10.3390/molecules25246052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Terrestrial plants, due to their sessile nature, are highly exposed to environmental pressure and therefore need to produce very effective molecules that enable them to survive all the threats. Myrica and Morella (Myricaceae) are taxonomically close genera, which include species of trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine. For instance, in Chinese or Japanese folk medicine, they are used to treat diarrhea, digestive problems, headache, burns, and skin diseases. A wide array of compounds isolated from different parts of Myrica and/or Morella species possess several biological activities, like anticancer, antidiabetic, anti-obesity, and cardio-/neuro-/hepatoprotective activities, both in vitro and in vivo, with myricanol, myricitrin, quercitrin, and betulin being the most promising. There are still many other compounds isolated from both genera whose biological activities have not been evaluated, which represents an excellent opportunity to discover new applications for those compounds and valorize Morella/Myrica species.
Collapse
|
8
|
Bai X, Tang J. Myrcene Exhibits Antitumor Activity Against Lung Cancer Cells by Inducing Oxidative Stress and Apoptosis Mechanisms. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20961189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myrcene, a natural olefinic hydrocarbon, possesses anti-inflammatory, analgesic, antibiotic, and antimutagenic properties, but its anticancer effect has not yet been elucidated. Hence, the present study was framed to investigate the molecular mechanism by which myrcene mediates the anticancer activity of A549 lung adenocarcinoma cells. In vitro, A549 lung cancer cells were cultured either with or without myrcene, and the effects on cellular metabolic activity, levels of reactive oxygen species (ROS), mitochondrial integrity, deoxyribonucleic acid (DNA) damage, and activity of caspases were analyzed. The study demonstrated that compared with control cells, myrcene induces cell death in a dose-dependent manner while inducing ROS levels. Further experiments revealed that the metabolic activity of the A549 lung adenocarcinoma cells was diminished with increased DNA damage and altered cellular integrity. In addition, increased activity of caspase-3 was also evidenced with reduced mitochondrial membrane potential synthesis in the myrcene-treated cells, which demonstrate that lung cancer cells experience signs of toxicity during myrcene treatment through the activation of the apoptosis mechanism via mitochondria-mediated cell death signaling and induction of oxidative stress. The results provide the first report on the evidence of anticancer activity and the possibility of a new drug that could be used for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xudong Bai
- Department of Thoracic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, P. R. China
| | - Jin Tang
- Department of Ultrasound, Shanxi Provincial Cancer Hospital, Taiyuan, P. R. China
| |
Collapse
|
9
|
Lalitha L, Sales T, Prince.P.Clarance, P.Agastian, Kim YO, Mahmoud A, Mohamed SE, Tack J, Na S, Kim HJ. In-vitro phytopharmacological and anticancer activity of Loranthus Longiflorus Desv. Var. Falcatuskurz against the human lung cancer cells. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2020; 32:1246-1253. [DOI: 10.1016/j.jksus.2019.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
10
|
Jahng Y, Park JG. Recent Studies on Cyclic 1,7-Diarylheptanoids: Their Isolation, Structures, Biological Activities, and Chemical Synthesis. Molecules 2018; 23:molecules23123107. [PMID: 30486479 PMCID: PMC6321387 DOI: 10.3390/molecules23123107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/31/2022] Open
Abstract
Diarylheptanoids are a family of plant secondary metabolites with a 7 carbon skeleton possessing two phenyl rings at the 1- and 7-positions. They can be subdivided into acyclic and cyclic diarylheptanoids where the latter are further divided into meta,meta-bridged biphenyls ([7.0]metacyclophanes) and meta,para-bridged diphenyl ether heptanoids (oxa[7.1]metapara-cyclophanes). Since the isolation of curcumin from the rhizomes of turmeric (Curcuma longa) in 1815 which was named curcumin, a variety of diarylheptanoids have been isolated from a number of plant families such as Aceraceae, Actinidiaceae, Betulaceae, Burseraceae, Casuarinaceae, Juglandaceae, Leguminosae, Myricaceae, and Zingiberaceae. Earlier studies on these diarylheptanoids have been summarized on several occasions, of which the main themes only focus on isolation, structure elucidation, and the biological properties of linear types. Only a few have covered cyclic diarylheptanoids and their chemical synthesis has been covered lastly by Zhu et al. in 2000. The present paper has, therefore, covered recent progress in cyclic diarylheptanoids focusing on the isolation, structural and biological features, and chemical synthesis.
Collapse
Affiliation(s)
- Yurngdong Jahng
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea.
| | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Korea.
| |
Collapse
|
11
|
Curcumin composite particles prepared by spray drying and in vitro anti-cancer activity on lung cancer cell line. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
The mechanistic antitumor study of myricanol 5-fluorobenzyloxy ether in human leukemic cell HL-60. Future Med Chem 2017; 9:2117-2127. [PMID: 28819994 DOI: 10.4155/fmc-2017-0165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM The aim of the study was to explore the growth inhibitory effect of myricanol 5-fluorobenzyloxy ether (5FEM) and the underlying mechanism in human leukemic cells HL-60. MATERIALS & METHODS 5FEM was obtained by chemical modification of myricanol with fluorobenzyloxy ether at the OH(5) position. The cytotoxicity, cell apoptosis, cell cycle and the expression of key apoptosis-related genes in HL-60 were evaluated. RESULTS & CONCLUSION 5FEM can significantly inhibited growth of HL-60 cells, increased the G2/M population and upregulated the expression of Bax, Fas, FasL, caspase-9 and p21 and downregulated that of Bcl-2 and survivin. The results enhance our understanding of 5FEM and aid the discovery of novel myricanol derivatives as potential antitumor agents.
Collapse
|
13
|
Traditional Chinese medicine as adjunctive therapy improves the long-term survival of lung cancer patients. J Cancer Res Clin Oncol 2017; 143:2425-2435. [DOI: 10.1007/s00432-017-2491-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
|
14
|
Peng Y, Sun HY, Wang ZC, Xu XD, Song JC, Gong ZJ. Fabrication of Alginate/Calcium Carbonate Hybrid Microparticles for Synergistic Drug Delivery. Chemotherapy 2015; 61:32-40. [DOI: 10.1159/000440645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022]
Abstract
A hybrid drug delivery system coloaded with different drugs for synergistic drug delivery was developed. Alginate/calcium carbonate (CaCO3) hybrid microparticles (MPs) were fabricated via a facile coprecipitation method under mild conditions without using any organic solvent and surfactant. Due to the incorporation of negatively charged alginate chains onto the surface, the obtained hybrid MPs with spherical morphology showed good colloidal stability in an aqueous solution. An antitumor drug (doxorubicin, DOX) and a drug resistance reversal agent (verapamil, VP) were coloaded in the hybrid MPs simultaneously to obtain dual-drug-loaded MPs (DOX/VP/MP). Due to the presence of inorganic CaCO3 (∼54 wt%), the drugs could be loaded in the hybrid MPs with high encapsulation efficiency and the drug release could be effectively sustained. The cell growth inhibition of the drug-loaded MPs was evaluated in HeLa cells. An in vitro study showed DOX/VP/MP exhibited higher cell growth inhibition as compared with DOX monodrug-loaded MPs (DOX/MP). These results suggest the hybrid MPs can potentially be used as a synergistic drug delivery platform for cancer chemotherapy.
Collapse
|